25 resultados para Pre-analytical phase
em Aston University Research Archive
Resumo:
Background - Pichia pastoris is a widely-used host for recombinant protein production; expression is typically driven by methanol-inducible alcohol oxidase (AOX) promoters. Recently this system has become an important source of recombinant G protein-coupled receptors (GPCRs) for structural biology and drug discovery. The influence of diverse culture parameters (such as pH, dissolved oxygen concentration, medium composition, antifoam concentration and culture temperature) on productivity has been investigated for a wide range of recombinant proteins in P. pastoris. In contrast, the impact of the pre-induction phases on yield has not been as closely studied. In this study, we examined the pre-induction phases of P. pastoris bioreactor cultivations producing three different recombinant proteins: the GPCR, human A2a adenosine receptor (hA2aR), green fluorescent protein (GFP) and human calcitonin gene-related peptide receptor component protein (as a GFP fusion protein; hCGRP-RCP-GFP). Results - Functional hA2aR was detected in the pre-induction phases of a 1 L bioreactor cultivation of glycerol-grown P. pastoris. In a separate experiment, a glycerol-grown P. pastoris strain secreted soluble GFP prior to methanol addition. When glucose, which has been shown to repress AOX expression, was the pre-induction carbon source, hA2aR and GFP were still produced in the pre-induction phases. Both hA2aR and GFP were also produced in methanol-free cultivations; functional protein yields were maintained or increased after depletion of the carbon source. Analysis of the pre-induction phases of 10 L pilot scale cultivations also demonstrated that pre-induction yields were at least maintained after methanol induction, even in the presence of cytotoxic concentrations of methanol. Additional bioreactor data for hCGRP-RCP-GFP and shake-flask data for GFP, horseradish peroxidase (HRP), the human tetraspanins hCD81 and CD82, and the tight-junction protein human claudin-1, demonstrated that bioreactor but not shake flask cultivations exhibit recombinant protein production in the pre-induction phases of P. pastoris cultures. Conclusions - The production of recombinant hA2aR, GFP and hCGRP-RCP-GFP can be detected in bioreactor cultivations prior to methanol induction, while this is not the case for shake-flask cultivations of GFP, HRP, hCD81, hCD82 and human claudin-1. This confirms earlier suggestions of leaky expression from AOX promoters, which we report here for both glycerol- and glucose-grown cells in bioreactor cultivations. These findings suggest that the productivity of AOX-dependent bioprocesses is not solely dependent on induction by methanol. We conclude that in order to maximize total yields, pre-induction phase cultivation conditions should be optimized, and that increased specific productivity may result in decreased biomass yields.
Resumo:
This thesis describes the development of a simple and accurate method for estimating the quantity and composition of household waste arisings. The method is based on the fundamental tenet that waste arisings can be predicted from information on the demographic and socio-economic characteristics of households, thus reducing the need for the direct measurement of waste arisings to that necessary for the calibration of a prediction model. The aim of the research is twofold: firstly to investigate the generation of waste arisings at the household level, and secondly to devise a method for supplying information on waste arisings to meet the needs of waste collection and disposal authorities, policy makers at both national and European level and the manufacturers of plant and equipment for waste sorting and treatment. The research was carried out in three phases: theoretical, empirical and analytical. In the theoretical phase specific testable hypotheses were formulated concerning the process of waste generation at the household level. The empirical phase of the research involved an initial questionnaire survey of 1277 households to obtain data on their socio-economic characteristics, and the subsequent sorting of waste arisings from each of the households surveyed. The analytical phase was divided between (a) the testing of the research hypotheses by matching each household's waste against its demographic/socioeconomic characteristics (b) the development of statistical models capable of predicting the waste arisings from an individual household and (c) the development of a practical method for obtaining area-based estimates of waste arisings using readily available data from the national census. The latter method was found to represent a substantial improvement over conventional methods of waste estimation in terms of both accuracy and spatial flexibility. The research therefore represents a substantial contribution both to scientific knowledge of the process of household waste generation, and to the practical management of waste arisings.
Resumo:
An analytical first order calculation of the impact of Gaussian white noise on a novel single Mach-Zehnder Interferometer demodulation scheme for DQPSK reveals a constant Q factor ratio to the conventional scheme.
Resumo:
Long-haul high speed optical transmission systems are significantly distorted by the interplay between the electronic chromatic dispersion (CD) equalization and the local oscillator (LO) laser phase noise, which leads to an effect of equalization enhanced phase noise (EEPN). The EEPN degrades the performance of optical communication systems severely with the increment of fiber dispersion, LO laser linewidth, symbol rate, and modulation format. In this paper, we present an analytical model for evaluating the performance of bit-error-rate (BER) versus signal-to-noise ratio (SNR) in the n-level phase shift keying (n-PSK) coherent transmission system employing differential carrier phase estimation (CPE), where the influence of EEPN is considered. Theoretical results based on this model have been investigated for the differential quadrature phase shift keying (DQPSK), the differential 8-PSK (D8PSK), and the differential 16-PSK (D16PSK) coherent transmission systems. The influence of EEPN on the BER performance in term of the fiber dispersion, the LO phase noise, the symbol rate, and the modulation format are analyzed in detail. The BER behaviors based on this analytical model achieve a good agreement with previously reported BER floors influenced by EEPN. Further simulations have also been carried out in the differential CPE considering EEPN. The results indicate that this analytical model can give an accurate prediction for the DQPSK system, and a leading-order approximation for the D8PSK and the D16PSK systems.
Resumo:
The overall objective of this work was to compare the effect of pre-treatment and catalysts on the quality of liquid products from fast pyrolysis of biomass. This study investigated the upgrading of bio-oil in terms of its quality as a bio-fuel and/or source of chemicals. Bio-oil used directly as a biofuel for heat or power needs to be improved particularly in terms of temperature sensitivity, oxygen content, chemical instability, solid content, and heating values. Chemicals produced from bio-oil need to be able to meet product specifications for market acceptability. There were two main objectives in this research. The first was to examine the influence of pre-treatment of biomass on the fast pyrolysis process and liquid quality. The relationship between the method of pre-treatment of biomass feedstock to fast pyrolysis oil quality was studied. The thermal decomposition behaviour of untreated and pretreated feedstocks was studied by using a TGA (thermogravimetric analysis) and a Py-GC/MS (pyroprobe-gas chromatography/mass spectrometry). Laboratory scale reactors (100g/h, 300g/h, 1kg/h) were used to process untreated and pretreated feedstocks by fast pyrolysis. The second objective was to study the influence of numerous catalysts on fast pyrolysis liquids from wheat straw. The first step applied analytical pyrolysis (Py-GC/MS) to determine which catalysts had an effect on fast pyrolysis liquid, in order to select catalysts for further laboratory fast pyrolysis. The effect of activation, temperature, and biomass pre-treatment on catalysts were also investigated. Laboratory experiments were also conducted using the existing 300g/h fluidised bed reactor system with a secondary catalytic fixed bed reactor. The screening of catalysts showed that CoMo was a highly active catalyst, which particularly reduced the higher molecular weight products of fast pyrolysis. From these screening tests, CoMo catalyst was selected for larger scale laboratory experiments. With reference to the effect of pre-treatment work on fast pyrolysis process, a significant effect occurred on the thermal decomposition of biomass, as well as the pyrolysis products composition, and the proportion of key components in bio-oil. Torrefaction proved to have a mild influence on pyrolysis products, when compared to aquathermolysis and steam pre-treatment.
Resumo:
Physiological and neuroimaging studies provide evidence to suggest that attentional mechanisms operating within the fronto-parietal network may exert top–down control on early visual areas, priming them for forthcoming sensory events. The believed consequence of such priming is enhanced task performance. Using the technique of magnetoencephalography (MEG), we investigated this possibility by examining whether attention-driven changes in cortical activity are correlated with performance on a line-orientation judgment task. We observed that, approximately 200 ms after a covert attentional shift towards the impending visual stimulus, the level of phase-resetting (transient neural coherence) within the calcarine significantly increased for 2–10 Hz activity. This was followed by a suppression of alpha activity (near 10 Hz) which persisted until the onset of the stimulus. The levels of phase-resetting, alpha suppression and subsequent behavioral performance varied between subjects in a systematic fashion. The magnitudes of phase-resetting and alpha-band power were negatively correlated, with high levels of coherence associated with high levels of performance. We propose that top–down attentional control mechanisms exert their initial effects within the calcarine through a phase-resetting within the 2–10 Hz band, which in turn triggers a suppression of alpha activity, priming early visual areas for incoming information and enhancing behavioral performance.
Resumo:
We propose a computationally efficient method to the per-channel dispersion optimisation applied to 50 GHz-spaced N × 20-Gbit/s wavelength division multiplexing return-to-zero differential phase shift keying transmission in non-zero dispersion-shifted fibre based submarine systems. Crown Copyright © 2010.
Resumo:
Molecular transport in phase space is crucial for chemical reactions because it defines how pre-reactive molecular configurations are found during the time evolution of the system. Using Molecular Dynamics (MD) simulated atomistic trajectories we test the assumption of the normal diffusion in the phase space for bulk water at ambient conditions by checking the equivalence of the transport to the random walk model. Contrary to common expectations we have found that some statistical features of the transport in the phase space differ from those of the normal diffusion models. This implies a non-random character of the path search process by the reacting complexes in water solutions. Our further numerical experiments show that a significant long period of non-stationarity in the transition probabilities of the segments of molecular trajectories can account for the observed non-uniform filling of the phase space. Surprisingly, the characteristic periods in the model non-stationarity constitute hundreds of nanoseconds, that is much longer time scales compared to typical lifetime of known liquid water molecular structures (several picoseconds).
Resumo:
Aim of the work is the implementation of a low temperature reforming (LT reforming) unit downstream the Haloclean pyrolyser in order to enhance the heating value of the pyrolysis gas. Outside the focus of this work was to gain a synthesis gas quality for further use. Temperatures between 400 °C and 500 °C were applied. A commercial pre-reforming catalyst on a nickel basis from Südchemie was chosen for LT reforming. As biogenic feedstock wheat straw has been used. Pyrolysis of wheat straw at 450 °C by means of Haloclean pyrolysis leads to 28% of char, 50% of condensate and 22% of gas. The condensate separates in a water phase and an organic phase. The organic phase is liquid, but contains viscous compounds. These compounds could underlay aging and could lead to solid tars which can cause post processing problems. Therefore, the implementation of a catalytic reformer is not only of interest from an energetic point of view, it is generally interesting for tar conversion purposes after pyrolysis applications. By using a fixed bed reforming unit at 450–490 °C and space velocities about 3000 l/h the pyrolysis gas volume flow could be increased to about 58%. This corresponds to a decrease of the yields of condensates by means of catalysis up to 17%, the yield of char remains unchanged, since pyrolysis conditions are the same. The heating value in the pyrolysis gas could be increased by the factor of 1.64. Hydrogen concentrations up to 14% could be realised.
Resumo:
Sewage sludge was pyrolysed with 40% mixed wood, 40% rapeseed and 40% straw. The reason for the mixture of different biomass is to investigate the impact of co-pyrolysis on the upper phase of bio-oil in terms of changes to composition, elemental analysis, viscosity, water content, pH, higher heating value and acid number that could impact on their applications. The biomass was pyrolysed in a laboratory at 450 °C and bio-oil was collected from two cooling traps. The bio-oil obtained from co-pyrolysis of sewage sludge with wood, rapeseed and straw was analysed for composition using the gas chromatography mass spectrometry. The upper phase from the co-pyrolysis process was also characterised for ultimate analysis, higher heating values, water content, viscosity, pH and acid number. There was an increase in the amount of upper phase produced with co-pyrolysis of 40% rapeseed. It was also found that the upper phase from sewage sludge with mixed wood has the highest viscosity, acid number and lowest pH. The bio-oil containing 40% straw was found to have a pH of 6.5 with a very low acid number while the 40% rapeseed was found to have no acid number. Sewage sludge with 40% rapeseed was found to have the highest energy content of 34.8 MJ/kg, 40% straw has 32.5 MJ/kg while the 40% mixed wood pyrolysis oil has the lowest energy content of 31.3 MJ/kg. The 40% rapeseed fraction was found to have the highest water content of 8.2% compared to other fractions.
Resumo:
Although event-related potentials (ERPs) are widely used to study sensory, perceptual and cognitive processes, it remains unknown whether they are phase-locked signals superimposed upon the ongoing electroencephalogram (EEG) or result from phase-alignment of the EEG. Previous attempts to discriminate between these hypotheses have been unsuccessful but here a new test is presented based on the prediction that ERPs generated by phase-alignment will be associated with event-related changes in frequency whereas evoked-ERPs will not. Using empirical mode decomposition (EMD), which allows measurement of narrow-band changes in the EEG without predefining frequency bands, evidence was found for transient frequency slowing in recognition memory ERPs but not in simulated data derived from the evoked model. Furthermore, the timing of phase-alignment was frequency dependent with the earliest alignment occurring at high frequencies. Based on these findings, the Firefly model was developed, which proposes that both evoked and induced power changes derive from frequency-dependent phase-alignment of the ongoing EEG. Simulated data derived from the Firefly model provided a close match with empirical data and the model was able to account for i) the shape and timing of ERPs at different scalp sites, ii) the event-related desynchronization in alpha and synchronization in theta, and iii) changes in the power density spectrum from the pre-stimulus baseline to the post-stimulus period. The Firefly Model, therefore, provides not only a unifying account of event-related changes in the EEG but also a possible mechanism for cross-frequency information processing.
Resumo:
Future optical networks will require the implementation of very high capacity (and therefore spectral efficient) technologies. Multi-carrier systems, such as Orthogonal Frequency Division Multiplexing (OFDM) and Coherent WDM (CoWDM), are promising candidates. In this paper, we present analytical, numerical, and experimental investigations of the impact of the relative phases between optical subcarriers of CoWDM systems, as well as the effect that the number of independently modulated subcarriers can have on the performance. We numerically demonstrate a five-subcarrier and three-subcarrier 10-GBd CoWDM system with direct detected amplitude shift keying (ASK) and differentially/coherently detected (D) phase shift keying (PSK). The simulation results are compared with experimental measurements of a 32-Gbit/s DPSK CoWDM system in two configurations. The first configuration was a practical 3-modulator array where all three subcarriers were independently modulated, the second configuration being a traditional 2-modulator odd/even configuration, where only odd and even subcarriers were independently modulated. Simulation and experimental results both indicate that the independent modulation implementation has a greater dependency on the relative phases between subcarriers, with a stronger penalty for the center subcarrier than the odd/even modulation scheme.
Resumo:
This paper describes a design methodology to achieve optimal performance for a short-stroke single-phase tubular permanent-magnet motor which drives a reciprocating vapor compressor. The steady-state characteristic of the direct-drive linear-motor compressor system is analyzed, an analytical formula for predicting iron loss is presented, and a motor-design procedure which takes into account the effect of compressor loads under nominal operating condition is formulated. It is shown that the motor efficiency can be optimized with respect to two leading dimensional ratios. Experimental results validate the proposed design methodology. Copyright © 2010 IEEE.
Resumo:
We propose a computationally efficient method to the per-channel dispersion optimisation applied to 50 GHz-spaced N × 20-Gbit/s wavelength division multiplexing return-to-zero differential phase shift keying transmission in non-zero dispersion-shifted fibre based submarine systems. Crown Copyright © 2010.
Resumo:
We develop an analytical method for optimizing phase sensitive amplifiers for regeneration in multilevel phase encoded transmission systems. The model accurately predicts the optimum transfer function characteristics and identifies operating tolerances for different signal constellations and transmission scenarios. The results demonstrate the scalability of the scheme and show the significance of having simultaneous optimization of the transfer function and the signal alphabet. The model is general and can be applied to any regenerative system. © 2013 Optical Society of America.