8 resultados para Power system

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cascaded multilevel inverters-based Static Var Generators (SVGs) are FACTS equipment introduced for active and reactive power flow control. They eliminate the need for zigzag transformers and give a fast response. However, with regard to their application for flicker reduction in using Electric Arc Furnace (EAF), the existing multilevel inverter-based SVGs suffer from the following disadvantages. (1) To control the reactive power, an off-line calculation of Modulation Index (MI) is required to adjust the SVG output voltage. This slows down the transient response to the changes of reactive power; and (2) Random active power exchange may cause unbalance to the voltage of the d.c. link (HBI) capacitor when the reactive power control is done by adjusting the power angle d alone. To resolve these problems, a mathematical model of 11-level cascaded SVG, was developed. A new control strategy involving both MI (modulation index) and power angle (d) is proposed. A selected harmonics elimination method (SHEM) is taken for switching pattern calculations. To shorten the response time and simplify the controls system, feed forward neural networks are used for on-line computation of the switching patterns instead of using look-up tables. The proposed controller updates the MI and switching patterns once each line-cycle according to the sampled reactive power Qs. Meanwhile, the remainder reactive power (compensated by the MI) and the reactive power variations during the line-cycle will be continuously compensated by adjusting the power angles, d. The scheme senses both variables MI and d, and takes action through the inverter switching angle, qi. As a result, the proposed SVG is expected to give a faster and more accurate response than present designs allow. In support of the proposal there is a mathematical model for reactive powered distribution and a sensitivity matrix for voltage regulation assessment, MATLAB simulation results are provided to validate the proposed schemes. The performance with non-linear time varying loads is analysed and refers to a general review of flicker, of methods for measuring flickers due to arc furnace and means for mitigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis various mathematical methods of studying the transient and dynamic stabiIity of practical power systems are presented. Certain long established methods are reviewed and refinements of some proposed. New methods are presented which remove some of the difficulties encountered in applying the powerful stability theories based on the concepts of Liapunov. Chapter 1 is concerned with numerical solution of the transient stability problem. Following a review and comparison of synchronous machine models the superiority of a particular model from the point of view of combined computing time and accuracy is demonstrated. A digital computer program incorporating all the synchronous machine models discussed, and an induction machine model, is described and results of a practical multi-machine transient stability study are presented. Chapter 2 reviews certain concepts and theorems due to Liapunov. In Chapter 3 transient stability regions of single, two and multi~machine systems are investigated through the use of energy type Liapunov functions. The treatment removes several mathematical difficulties encountered in earlier applications of the method. In Chapter 4 a simple criterion for the steady state stability of a multi-machine system is developed and compared with established criteria and a state space approach. In Chapters 5, 6 and 7 dynamic stability and small signal dynamic response are studied through a state space representation of the system. In Chapter 5 the state space equations are derived for single machine systems. An example is provided in which the dynamic stability limit curves are plotted for various synchronous machine representations. In Chapter 6 the state space approach is extended to multi~machine systems. To draw conclusions concerning dynamic stability or dynamic response the system eigenvalues must be properly interpreted, and a discussion concerning correct interpretation is included. Chapter 7 presents a discussion of the optimisation of power system small sjgnal performance through the use of Liapunov functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power system simulation software is a useful tool for teaching the fundamentals of power system design and operation. However, existing commercial packages are not ideal for teaching work-based students because of high-cost, complexity of the software and licensing restrictions. This paper describes a set of power systems libraries that have been developed for use with the free, student-edition of a Micro-Cap Spice that overcomes these problems. In addition, these libraries are easily adapted to include power electronic converter based components into the simulation, such as HVDC, FACTS and smart-grid devices, as well as advanced system control functions. These types of technology are set to become more widespread throughout existing power networks, and their inclusion into a power engineering degree course is therefore becoming increasingly important.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The research carried out in this thesis was mainly concerned with the effects of large induction motors and their transient performance in power systems. Computer packages using the three phase co-ordinate frame of reference were developed to simulate the induction motor transient performance. A technique using matrix algebra was developed to allow extension of the three phase co-ordinate method to analyse asymmetrical and symmetrical faults on both sides of the three phase delta-star transformer which is usually required when connecting large induction motors to the supply system. System simulation, applying these two techniques, was used to study the transient stability of a power system. The response of a typical system, loaded with a group of large induction motors, two three-phase delta-star transformers, a synchronous generator and an infinite system was analysed. The computer software developed to study this system has the advantage that different types of fault at different locations can be studied by simple changes in input data. The research also involved investigating the possibility of using different integrating routines such as Runge-Kutta-Gill, RungeKutta-Fehlberg and the Predictor-Corrector methods. The investigation enables the reduction of computation time, which is necessary when solving the induction motor equations expressed in terms of the three phase variables. The outcome of this investigation was utilised in analysing an introductory model (containing only minimal control action) of an isolated system having a significant induction motor load compared to the size of the generator energising the system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper looks at potential distribution network stability problems under the Smart Grid scenario. This is to consider distributed energy resources (DERs) e.g. renewable power generations and intelligent loads with power-electronic controlled converters. The background of this topic is introduced and potential problems are defined from conventional power system stability and power electronic system stability theories. Challenges are identified with possible solutions from steady-state limits, small-signal, and large-signal stability indexes and criteria. Parallel computation techniques might be included for simulation or simplification approaches are required for a largescale distribution network analysis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

For intelligent DC distributed power systems, data communication plays a vital role in system control and device monitoring. To achieve communication in a cost effective way, power/signal dual modulation (PSDM), a method that integrates data transmission with power conversion, can be utilized. In this paper, an improved PSDM method using phase shift full bridge (PSFB) converter is proposed. This method introduces a phase control based freedom in the conventional PSFB control loop to realize communication using the same power conversion circuit. In this way, decoupled data modulation and power conversion are realized without extra wiring and coupling units, and thus the system structure is simplified. More importantly, the signal intensity can be regulated by the proposed perturbation depth, and so this method can adapt to different operating conditions. Application of the proposed method to a DC distributed power system composed of several PSFB converters is discussed. A 2kW prototype system with an embedded 5kbps communication link has been implemented, and the effectiveness of the method is verified by experimental results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The simulation of a power system such as the More Electric Aircraft is a complex problem. There are conflicting requirements of the simulation, for example in order to reduce simulation run-times, power ratings that need to be established over long periods of the flight can be calculated using a fairly coarse model, whereas power quality is established over relatively short periods with a detailed model. An important issue is to establish the requirements of the simulation work at an early stage. This paper describes the modelling and simulation strategy adopted for the UK TIMES project, which is looking into the optimisation of the More Electric Aircraft from a system level. Essentially four main requirements of the simulation work have been identified, resulting in four different types of simulation. Each of the simulations is described along with preliminary models and results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since the development of large scale power grid interconnections and power markets, research on available transfer capability (ATC) has attracted great attention. The challenges for accurate assessment of ATC originate from the numerous uncertainties in electricity generation, transmission, distribution and utilization sectors. Power system uncertainties can be mainly described as two types: randomness and fuzziness. However, the traditional transmission reliability margin (TRM) approach only considers randomness. Based on credibility theory, this paper firstly built models of generators, transmission lines and loads according to their features of both randomness and fuzziness. Then a random fuzzy simulation is applied, along with a novel method proposed for ATC assessment, in which both randomness and fuzziness are considered. The bootstrap method and multi-core parallel computing technique are introduced to enhance the processing speed. By implementing simulation for the IEEE-30-bus system and a real-life system located in Northwest China, the viability of the models and the proposed method is verified.