43 resultados para Potency
em Aston University Research Archive
Resumo:
Clinical trials have shown temozolomide to be an effective agent for treatment of malignant melanoma. In order to investigate its suitability for delivery via the skin, a series of temozolomide esters was synthesized as prodrugs. In vitro assays demonstrated temozolomide, temozolomide acid and the hexyl ester equi-effective against selected cancer cell lines. The susceptibility of the esters to enzyme hydrolysis and their effectiveness for application to the skin were investigated. The esters effectively diffuse through rat skin and the hexyl ester demonstrated profound potency for penetrating through skin. Topical application of 5% (w/v) hexyl ester in DMSO solution on a mouse model demonstrated a significant inhibition of tumor growth. These results suggest that temozolomide esters could be an effective alternative to temozolomide in the treatment of skin cancer. © 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Non-steroidal anti-inflammatory drugs (NSAIDs) cause peptic ulcer disease, but whether they interact with Helicobacter pylori to promote damage is controversial. Moreover, the reported induction of apoptosis in gastric cells by H. pylori lipopolysaccharide (LPS) (10-9 g /ml) contrasts with studies showing low immunological potency of this LPS. Therefore, the effects of LPS from H. pylori NCTC 11637 and Escherichia coli 0111:B4 on apoptosis in a primary culture of guinea-pig gastric mucous cells were investigated in the presence and absence of the NSAID, ibuprofen. Cell loss was estimated by a crystal violet assay, and apoptosis determined from caspase activity and from condensation and fragmentation of nuclei. Exposure to E. coli LPS for 24 h caused cell loss and enhanced apoptotic activity at concentrations ≥ 10-9 g/ml, but similar effects were only obtained with H. pylori LPS at concentrations ≥10-6 g/ml. Although ibuprofen (250 μM) caused cell loss and apoptosis, addition of either E. coli or H. pylori LPSs further enhanced these effects. In conclusion, LPS and ibuprofen interact to enhance gastric cell loss and apoptosis. In such interactions, E. coli LPS is more potent than that of H. pylori. The low potency of H. pylori LPS may contribute to a chronic low-grade gastritis that can be enhanced by the use of NSAIDs. © W. S. Maney & Son Ltd.
Resumo:
1. Adrenomedullin (AM) has two known receptors formed by the calcitonin receptor-like receptor (CL) and receptor activity-modifying protein (RAMP) 2 or 3: We report the effects of the antagonist fragments of human AM and CGRP (AM 22-52 and CGRP 8-37) in inhibiting AM at human (h), rat (r) and mixed species CL/RAMP2 and CL/RAMP3 receptors transiently expressed in Cos 7 cells or endogenously expressed as rCL/rRAMP2 complexes by Rat 2 and L6 cells. 2. AM 22-52 (10 μM) antagonised AM at all CL/RAMP2 complexes (apparent pA 2 values: 7.34±0.14 (hCL/hRAMP2), 7.28±0.06 (Rat2), 7.00±0.05 (L6), 6.25±0.17(rCL/hRAMP2)). CGRP 8-37 (10 μM) resembled AM 22-52 except on the rCL/hRAMP2 complex, where it did not antagonise AM (apparent PA 2 values: 7.04±0.13 (hCL/hRAMP2), 6.72±0.06 (Rat2), 7.03±0. 12 (L6)). 3. On CL/RAMP3 receptors, 10 μM CGRP 8-37 was an effective antagonist at all combinations (apparent pA 2 values: 6.96±0.08 (hCL/hRAMP3), 6.18±0.18 (rCL/rRAMP3), 6.48±0.20 (rCL/ hRAMP3)). However, 10 μm AM 22-52 only antagonised AM at the hCL/hRAMP3 receptor (apparent PA 2 6.73±0.14). 4. BIBN4096BS (10 μM) did not antagonise AM at any of the receptors. 5. Where investigated (all-rat and rat/human combinations), the agonist potency order on the CL/ RAMP3 receptor was AM∼βCGRP>αCGRP. 6. rRAMP3 showed three apparent polymorphisms, none of which altered its coding sequence. 7. This study shows that on CL/RAMP complexes, AM 22-52 has significant selectivity for the CL/ RAMP2 combination over the CL/RAMP3 combination. On the mixed species receptor, CGRP 8-37 showed the opposite selectivity. Thus, depending on the species, it is possible to discriminate pharmacologically between CL/RAMP2 and CL/RAMP3 AM receptors.
Resumo:
1. Structure-activity relationships for the binding of human α-calcitonin gene-related peptide 8-37 (hαCGRP8-37) have been investigated at the CGRP receptors expressed by human SK-N-MC (neuroblastoma) and Col 29 (colonic epithelia) cells by radioligand binding assays and functional assays (hαCGRP stimulation of adenylate cyclase). 2. On SK-N-MC cells the potency order was hαCGRP8-37 > hαCGRP19-37 = AC187 > rat amylin8-37 > hα[Tyr0]-CGRP28-37 (apparent pKBS of 7.49 ± 0.25, 5.89 ± 0.20, 6.18 ± 0.19, 5.85 ± 0.19 and 5.25 ± 0.07). The SK-N-MC receptor appeared CGRP1-like. 3. On Col 29 cells, only hαCGRP8-37 of the above compounds was able to antagonize the actions of hαCGRP (apparent pKB = 6.48 ± 0.28). Its receptor appeared CGRP2-like. 4. hα[Ala11,18]-CGRP8-37, where the amphipathic nature of the N-terminal α-helix has been reduced, bound to SK-N-MC cells a 100 fold less strongly than hαCGRP8-37. 5. On SK-N-MC cells, hαCGRP(8-18, 28-37) (M433) and mastoparan-hαCGRP28-37 (M432) had apparent pKBS of 6.64 ± 0.16 and 6.42 ± 0.26, suggesting that residues 19-27 play a minor role in binding. The physico-chemical properties of residues 8-18 may be more important than any specific side-chain interactions. 6. M433 was almost as potent as hαCGRP8-37 on Col 29 cells (apparent pKB = 6.17 ± 0.20). Other antagonists were inactive.
Resumo:
1. Potency orders were determined for a series of agonists and antagonists on the calcitonin gene-related peptide (CGRP) receptor of rat L6 myocytes. The agents tested were all shown to have been active against CGRP, amylin or adrenomedullin receptors. 2. AC187 had a PIC50 Of 6.8 ± 0.10, making it 14 fold less potent as an antagonist than CGRP8-37 (PIC50, 7.95 ± 0.14). Amyline8-37 was equipotent to AC187 (PIC50, 6.6 ± 0.16) and CGRP19-37 was a fold less potent than either (pIC50 6.1 ± 0.24). 3. [Ala11]-CGRP8-37 was 6 fold less potent than CGRP8-37, (pIC50 7.13 ± 0.14), whereas [Ala18] CGRP8-37 was approximately equipotent to CGRP8-37 (pIC50, 7.52 ± 0.15). However, [Ala11,Ala18]- CGRP8-37 was over 300 fold less potent than CGRP8-37 (pIC50, 5.30 ± 0.04). 4. [Tyr0]-CGRP28-37, amylin19-37 and adrenomedullin22-52 were inactive as antagonists at concentrations of up to 1 μM. 5. Biotinyl-human α-CGRP was 150 fold less potent than human α-CGRP itself (EC50 values of 48 ± 17 nM and 0.31 ± 0.13 nM, respectively). At 1 μM, [Cys(acetomethoxy)(2'7)]-CGRP was inactive as an agonist. 6. These results confirm a role for Arg11 in maintaining the high affinity binding of CGRP8-37. Arg18 is of less direct significance for high affinity binding, but it may be important in maintaining the amphipathic nature of CGRP and its analogues.
Resumo:
Calcitonin gene-related peptide (CGRP) shows diversity both in its effects and its receptors. It is likely to have roles as a neurotransmitter, neuromodulator, local hormone and trophic factor. Its effects include rapid changes in neuronal activity, relaxation of many type of smooth muscle, actions on metabolism and changes in gene expression. Receptor heterogenecity has been revealed from experiments comparing agonist potency ratios and antagonists affinities. the evidence from these approaches is reviewed in this article and a speculative receptor classification scheme is proposed. Some of the likely future directions for CGRP research are discussed. © 1993.
Resumo:
The concept of the haematopoietic stem cell (HSC) niche was formulated by Schofield in the 1970s, as a region within the bone marrow containing functional cell types that can maintain HSC potency throughout life. Since then, ongoing research has identified numerous cell types and a plethora of signals that not only maintain HSCs, but also dictate their behaviour with respect to homeostatic requirements and exogenous stresses. It has been proposed that there are endosteal and vascular niches within the bone marrow, which are thought to regulate different HSC populations. However, recent data depicts a more complicated picture, with functional crosstalk between cells in these two regions. In this review, recent research into the endosteal/vascular cell types and signals regulating HSC behaviour are considered, together with the possibility of a single subcompartmentalised niche.
Resumo:
The formulation of plasmid DNA (pDNA) in cationic liposomes is a promising strategy to improve the potency of DNA vaccines. In this respect, physicochemical parameters such as liposome size may be important for their efficacy. The aim of the current study was to investigate the effect of vesicle size on the in vivo performance of liposomal pDNA vaccines after subcutaneous vaccination in mice. The tissue distribution of cationic liposomes of two sizes, 500 nm (PDI 0.6) and 140 nm (PDI 0.15), composed of egg PC, DOPE and DOTAP, with encapsulated OVA-encoding pDNA, was studied by using dual radiolabeled pDNA-liposomes. Their potency to elicit cellular and humoral immune responses was investigated upon application in a homologous and heterologous vaccination schedule with 3 week intervals. It was shown that encapsulation of pDNA into cationic lipsomes resulted in deposition at the site of injection, and strongest retention was observed at large vesicle size. The vaccination studies demonstrated a more robust induction of OVA-specific, functional CD8+ T-cells and higher antibody levels upon vaccination with small monodisperse pDNA-liposomes, as compared to large heterodisperse liposomes or naked pDNA. The introduction of a PEG-coating on the small cationic liposomes resulted in enhanced lymphatic drainage, but immune responses were not improved when compared to non-PEGylated liposomes. In conclusion, it was shown that the physicochemical properties of the liposomes are of crucial importance for their performance as pDNA vaccine carrier, and cationic charge and small size are favorable properties for subcutaneous DNA vaccination.
Resumo:
Receptor activity modifying protein 1 (RAMP1) is an integral component of several receptors including the calcitonin gene-related peptide (CGRP) receptor. It forms a complex with the calcitonin receptor-like receptor (CLR) and is required for receptor trafficking and ligand binding. The N-terminus of RAMP1 comprises three helices. The current study investigated regions of RAMP1 important for CGRP or CLR interactions by alanine mutagenesis. Modeling suggested the second and third helices were important in protein-protein interactions. Most of the conserved residues in the N-terminus (M48, W56, Y66, P85, N66, H97, F101, D113, P114, P115), together with a further 13 residues spread throughout three helices of RAMP1, were mutated to alanine and coexpressed with CLR in Cos 7 cells. None of the mutations significantly reduced RAMP expression. Of the nine mutants from helix 1, only M48A had any effect, producing a modest reduction in trafficking of CLR to the cell surface. In helix 2 Y66A almost completely abolished CLR trafficking; L69A and T73A reduced the potency of CGRP to produce cAMP. In helix 3, H97A abolished CLR trafficking; P85A, N86A, and F101A had caused modest reductions in CLR trafficking and also reduced the potency of CGRP on cAMP production. F93A caused a modest reduction in CLR trafficking alone and L94A increased cAMP production. The data are consistent with a CLR recognition site particularly involving Y66 and H97, with lesser roles for adjacent residues in helix 3. L69 and T73 may contribute to a CGRP recognition site in helix 2 also involving nearby residues.
Resumo:
Contrast masking from parallel grating surrounds (doughnuts) and superimposed orthogonal masks have different characteristics. However, it is not known whether the saturation of the underlying suppression that has been found for parallel doughnut masks depends on (i) relative mask and target orientation, (ii) stimulus eccentricity or (iii) surround suppression. We measured contrast-masking functions for target patches of grating in the fovea and in the periphery for cross-oriented superimposed and doughnut masks and parallel doughnut masks. When suppression was evident, the factor that determined whether it accelerated or saturated was whether the mask stimulus was crossed or parallel. There are at least two interpretations of the asymptotic behaviour of the parallel surround mask. (1) Suppression arises from pathways that saturate with (mask) contrast. (2) The target is processed by a mechanism that is subject to surround suppression at low target contrasts, but a less sensitive mechanism that is immune from surround suppression ‘breaks through’ at higher target contrasts. If the mask can be made less potent, then masking functions should shift downwards, and sideways for the two accounts, respectively. We manipulated the potency of the mask by varying the size of the hole in a parallel doughnut mask. The results provided strong evidence for the first account but not the second. On the view that response compression becomes more severe progressing up the visual pathway, our results suggest that superimposed cross-orientation suppression precedes orientation tuned surround suppression. These results also reveal a previously unrecognized similarity between surround suppression and crowding (Pelli, Palomares, & Majaj, 2004).
Resumo:
Compared to naked DNA immunisation, entrapment of plasmid-based DNA vaccines into liposomes by the dehydration-rehydration method has shown to enhance both humoural and cell-mediated immune responses to encoded antigens administered by a variety of routes. In this paper, we have investigated the application of liposome-entrapped DNA and their cationic lipid composition on such potency after subcutaneous immunisation. Plasmid pI.18Sfi/NP containing the nucleoprotein (NP) gene of A/Sichuan/2/87 (H3N2) influenza virus in the pI.18 expression vector was incorporated by the dehydration-rehydration method into liposomes composed of 16 μmol egg phosphatidylcholine (PC), 8 μmoles dioleoyl phosphatidylethanolamine (DOPE) or cholesterol (Chol) and either the cationic lipid 1,2-diodeoyl-3-(trimethylammonium) propane (DOTAP) or cholesteryl 3-N-(dimethyl amino ethyl) carbamate (DC-Chol). This method, entailing mixing of small unilamellar vesicles (SUV) with DNA, followed by dehydration and rehydration, yielded incorporation values of 90-94% of the DNA used. Mixing or rehydration of preformed cationic liposomes with 100 μg plasmid DNA also led to similarly high complexation values (92-94%). In an attempt to establish differences in the nature of DNA association with these various liposome preparations their physico-chemical characteristics were investigated. Studies on vesicle size, zeta potential and gel electrophoresis in the presence of the anion sodium dodecyl sulphate (SDS) indicate that, under the conditions employed, formulation of liposomal DNA by the dehydration-rehydration generated submicron size liposomes incorporating most of the DNA in a manner that prevents DNA displacement through anion competition. The bilayer composition of these dehydration-rehydration vesicles (DRV(DNA)) can also further influence these physicochemical characteristics with the presence of DOPE within the liposome bilayer resulting in a reduced vesicle zeta potential. Subcutaneous liposome-mediated DNA immunisation employing two DRV(DNA) formulations as well as naked DNA revealed that humoural responses (immunoglobulin total IgG, and subclasses IgG1 and 1gG2a) engendered by the plasmid encoded NP were substantially higher after dosing twice, 28 days apart with 10 μg liposome-entrapped DNA compared to naked DNA. At all time points measured, mice immunised with naked DNA showed no greater immune response compared to the control, non-immunised group. In contrast, as early as day 49, responses were significantly higher in mice injected with DNA entrapped in DRV liposomes containing DOTAP compared to the control group and mice immunised with naked DNA. By day 56, all total IgG responses from mice immunised with both DRV formulations were significantly higher. Comparison between the DRV formulations revealed no significant difference in immune responses elicited except at day 114, where the humoural responses of the group injected with liposomal formulation containing DC-Chol dropped to significantly lower levels that those measured in mice which received the DOTAP formulation. Similar results were found when the IgG1 and IgG2a subclass responses were determined. These results suggest that, not only can DNA be effectively entrapped within liposomes using the DRV method but that such DRV liposomes containing DNA may be a useful system for subcutaneous delivery of DNA vaccines. © 2003 Taylor & Francis Ltd.
Resumo:
The role of receptor activity modifying protein 1 (RAMP1) in forming receptors with the calcitonin receptor-like receptor (CLR) and the calcitonin receptor (CTR) was examined by producing chimeras between RAMP1 and RAMP3. RAMPs have three extracellular helices. Exchange of helix 1 of the RAMPs or residues 62-69 in helix 2 greatly reduced CLR trafficking (a marker for CLR association). Modeling suggests that these exchanges alter the CLR recognition site on RAMP1, which is more exposed than on RAMP3. Exchange of residues 86-89 of RAMP1 had no effect on the trafficking of CLR but reduced the potency of human (h) alphaCGRP and adrenomedullin. However, these alterations to RAMP1 had no effect on the potency of hbetaCGRP. These residues of RAMP1 lie at the junction of helix 3 and its connecting loop with helix 2. Modeling suggests that the loop is more exposed in RAMP1 than RAMP3; it may play an important role in peptide binding, either directly or indirectly. Exchange of residues 90-94 of RAMP1 caused a modest reduction in CLR expression and a 15-fold decrease in CGRP potency. It is unlikely that the decrease in expression is enough to explain the reduction in potency, and so these may have dual roles in recognizing CLR and CGRP. For CTR, only 6 out of 26 chimeras covering the extracellular part of RAMP1 did not reduce agonist potency. Thus the association of CTR with RAMP1 seems more sensitive to changes in RAMP1 structure induced by the chimeras than is CLR.
Resumo:
We present a new form of contrast masking in which the target is a patch of low spatial frequency grating (0.46 c/deg) and the mask is a dark thin ring that surrounds the centre of the target patch. In matching and detection experiments we found little or no effect for binocular presentation of mask and test stimuli. But when mask and test were presented briefly (33 or 200 ms) to different eyes (dichoptic presentation), masking was substantial. In a 'half-binocular' condition the test stimulus was presented to one eye, but the mask stimulus was presented to both eyes with zero-disparity. This produced masking effects intermediate to those found in dichoptic and full-binocular conditions. We suggest that interocular feature matching can attenuate the potency of interocular suppression, but unlike in previous work (McKee, S. P., Bravo, M. J., Taylor, D. G., & Legge, G. E. (1994) Stereo matching precedes dichoptic masking. Vision Research, 34, 1047) we do not invoke a special role for depth perception. © 2004 Elsevier Ltd. All rights reserved.
Resumo:
Two key issues defined the focus of this research in manufacturing plasmid DNA for use In human gene therapy. First, the processing of E.coli bacterial cells to effect the separation of therapeutic plasmid DNA from cellular debris and adventitious material. Second, the affinity purification of the plasmid DNA in a Simple one-stage process. The need arises when considering the concerns that have been recently voiced by the FDA concerning the scalability and reproducibility of the current manufacturing processes in meeting the quality criteria of purity, potency, efficacy, and safety for a recombinant drug substance for use in humans. To develop a preliminary purification procedure, an EFD cross-flow micro-filtration module was assessed for its ability to effect the 20-fold concentration, 6-time diafiltration, and final clarification of the plasmid DNA from the subsequent cell lysate that is derived from a 1 liter E.coli bacterial cell culture. Historically, the employment of cross-flow filtration modules within procedures for harvesting cells from bacterial cultures have failed to reach the required standards dictated by existing continuous centrifuge technologies, frequently resulting in the rapid blinding of the membrane with bacterial cells that substantially reduces the permeate flux. By challenging the EFD module, containing six helical wound tubular membranes promoting centrifugal instabilities known as Dean vortices, with distilled water between the Dean number's of 187Dn and 818Dn,and the transmembrane pressures (TMP) of 0 to 5 psi. The data demonstrated that the fluid dynamics significantly influenced the permeation rate, displaying a maximum at 227Dn (312 Imh) and minimum at 818Dn (130 Imh) for a transmembrane pressure of 1 psi. Numerical studies indicated that the initial increase and subsequent decrease resulted from a competition between the centrifugal and viscous forces that create the Dean vortices. At Dean numbers between 187Dn and 227Dn , the forces combine constructively to increase the apparent strength and influence of the Dean vortices. However, as the Dean number in increases above 227 On the centrifugal force dominates the viscous forces, compressing the Dean vortices into the membrane walls and reducing their influence on the radial transmembrane pressure i.e. the permeate flux reduced. When investigating the action of the Dean vortices in controlling tile fouling rate of E.coli bacterial cells, it was demonstrated that the optimum cross-flow rate at which to effect the concentration of a bacterial cell culture was 579Dn and 3 psi TMP, processing in excess of 400 Imh for 20 minutes (i.e., concentrating a 1L culture to 50 ml in 10 minutes at an average of 450 Imh). The data demonstrated that there was a conflict between the Dean number at which the shear rate could control the cell fouling, and the Dean number at which tile optimum flux enhancement was found. Hence, the internal geometry of the EFD module was shown to sub-optimal for this application. At 579Dn and 3 psi TMP, the 6-fold diafiltration was shown to occupy 3.6 minutes of process time, processing at an average flux of 400 Imh. Again, at 579Dn and 3 psi TMP the clarification of the plasmid from tile resulting freeze-thaw cell lysate was achieved at 120 Iml1, passing 83% (2,5 mg) of the plasmid DNA (6,3 ng μ-1 10.8 mg of genomic DNA (∼23,00 Obp, 36 ng μ-1 ), and 7.2 mg of cellular proteins (5-100 kDa, 21.4 ngμ-1 ) into the post-EFD process stream. Hence the EFD module was shown to be effective, achieving the desired objectives in approximately 25 minutes. On the basis of its ability to intercalate into low molecular weight dsDNA present in dilute cell lysates, and be electrophoresed through agarose, the fluorophore PicoGreen was selected for the development of a suitable dsDNA assay. It was assesseel for its accuracy, and reliability, In determining the concentration and identity of DNA present in samples that were eleclrophoresed through agarose gels. The signal emitted by intercalated PicoGreen was shown to be constant and linear, and that the mobility of the PicaGreen-DNA complex was not affected by the intercalation. Concerning the secondary purification procedure, various anion-exchange membranes were assessed for their ability to capture plasmid DNA from the post-EFD process stream. For a commercially available Sartorius Sartobind Q15 membrane, the reduction in the equilibriumbinding capacity for ctDNA in buffer of increasing ionic demonstrated that DNA was being.adsorbed by electrostatic interactions only. However, the problems associated with fluid distribution across the membrane demonstrated that the membrane housing was the predominant cause of the .erratic breakthrough curves. Consequently, this would need to be rectified before such a membrane could be integrated into the current system, or indeed be scaled beyond laboratory scale. However, when challenged with the process material, the data showed that considerable quantities of protein (1150 μg) were adsorbed preferentially to the plasmid DNA (44 μg). This was also shown for derived Pall Gelman UltraBind US450 membranes that had been functionalised by varying molecular weight poly-L~lysine and polyethyleneimine ligands. Hence the anion-exchange membranes were shown to be ineffective in capturing plasmid DNA from the process stream. Finally, work was performed to integrate a sequence-specific DNA·binding protein into a single-stage DNA chromatography, isolating plasmid DNA from E.coli cells whilst minimising the contamination from genomic DNA and cellular protein. Preliminary work demonstrated that the fusion protein was capable of isolating pUC19 DNA into which the recognition sequence for the fusion-protein had been inserted (pTS DNA) when in the presence of the conditioned process material. Althougth the pTS recognition sequence differs from native pUC19 sequences by only 2 bp, the fusion protein was shown to act as a highly selective affinity ligand for pTS DNA alone. Subsequently, the scale of the process was scaled 25-fold and positioned directly following the EFD system. In conclusion, the integration of the EFD micro-filtration system and zinc-finger affinity purification technique resulted in the capture of approximately 1 mg of plasmid DNA was purified from 1L of E.coli culture in a simple two stage process, resulting in the complete removal of genomic DNA and 96.7% of cellular protein in less than 1 hour of process time.
Resumo:
The literature relating to the principles and practice of drying of materials, particularly those susceptible to thermal degradation or undesirable loss of volatile components, has been reviewed. Single droplets of heat-sensitive materials were dried whilst suspended in a horizontal wind tunnel from a specially-designed, rotating thermocouple which enabled direct observation of drying behaviour and continuous measurement of droplet temperature as drying progressed. The effects of drying air temperature and initial solids concentration on the potency of various antibiotics, viz. ampicillin, chloramphenicol, oxytetracycline, streptomycin and tetracycline, were assessed using a modified Drug Sensitivity Testing technique. Only ampicillin was heat-sensitive at temperatures above 100°C, e.g. at an air temperature of 115°C its zone diameter was reduced from 100% to 45%. Selected enzymes, viz. dextran sucrase and invertase, were also dried and their residual activities determined by High Performance Liquid Chromatography. The residual activity of dextran sucrase was rapidly reduced at temperatures above 65°C, and the residual activity of invertase reduced rapidly at temperatures above 65°C; but drying with short residence times will retain most of its activity. The performance of various skin-forming encapsulants, viz. rice and wheat starch, dextrin, coffee, skim milk, fructose, gelatine 60 and 150 Bloom, and gum arabic, was evaluated to determine their capabilities for retention of ethanol as a model volatile, under different operating conditions. The effects of initial solids concentration, air velocity and temperature were monitored for each material tested. Ethanol content was analysed by Gas Liquid Chromatography and in some cases dried crusts were removed for examination. Volatiles retention was concluded to depend in all cases upon the rate and nature of the skin formation and selective diffusion phenomena. The results provided further insight into the inter-relationship between temperature, residence time and thermal degradation of heat-sensitive materials. They should also assist in selection of the preferred dryer for such materials, and of the operating parameter to enable maximum retention of the required physico-chemical characteristics in the dried materials.