14 resultados para Postural

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

DDevelopmental dyslexia is a reading disorder associated with impaired postural control. However, such deficits are also found in attention deficit hyperactivity disorder (ADHD), which is present in a substantial subset of dyslexia diagnoses. Very few studies of balance in dyslexia have assessed ADHD symptoms, thereby motivating the hypothesis that such measures can account for the group differences observed. In this study, we assessed adults with dyslexia and similarly aged controls on a battery of cognitive, literacy and attention measures, alongside tasks of postural stability. Displacements of centre of mass to perturbations of posture were measured in four experimental conditions using digital optical motion capture. The largest group differences were obtained in conditions where cues to the support surface were reduced. Between-group differences in postural sway and in sway variability were largely accounted for by co-varying hyperactivity and inattention ratings, however. These results therefore suggest that postural instability in dyslexia is more strongly associated with symptoms of ADHD than to those specific to reading impairment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Impaired postural control has been associated with poor reading skills, as well as with lower performance on measures of attention and motor control variables that frequently co-occur with reading difficulties. Measures of balance and motor control have been incorporated into several screening batteries for developmental dyslexia, but it is unclear whether the relationship between such skills and reading manifests as a behavioural continuum across the range of abilities or is restricted to groups of individuals with specific disorder phenotypes. Here were obtained measures of postural control alongside measures of reading, attention and general cognitive skills in a large sample of young adults (n = 100). Postural control was assessed using centre of pressure (CoP) measurements, obtained over 5 different task conditions. Our results indicate an absence of strong statistical relationships between balance measures with either reading, cognitive or attention measures across the sample as a whole. © 2014 Loras et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Developmental dyslexia is typically defined by deficits in phonological skills, but it is also associated with anomalous performance on measures of balance. Although balance assessments are included in several screening batteries for dyslexia, the association between impairments in literacy and deficits in postural stability could be due to the high co-occurrence of dyslexia with other developmental disorders in which impairments of motor behaviour are also prevalent. Methods: We identified 17 published studies that compared balance function between dyslexia and control samples and obtained effect-sizes for each. Contrast and association analyses were used to quantify the influence of hypothesised moderator variables on differences in effects across studies. Results: The mean effect-size of the balance deficit in dyslexia was .64 (95% CI = .44-.78) with heterogeneous findings across the population of studies. Probable co-occurrence of other developmental disorders and variability in intelligence scores in the dyslexia samples were the strongest moderator variables of effect-size. Conclusions: Balance deficits are associated with dyslexia, but these effects are apparently more strongly related to third variables other than to reading ability. Deficits of balance may indicate increased risk of developmental disorder, but are unlikely to be uniquely associated with dyslexia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract We recorded MEG responses from 17 participants viewing random-dot patterns simulating global optic flow components (expansion, contraction, rotation, deformation, and translation) and a random motion control condition. Theta-band (3–7 Hz), MEG signal power was greater for expansion than the other optic flow components in a region concentrated along the calcarine sulcus, indicating an ecologically valid, foveo-fugal bias for unidirectional motion sensors in V1. When the responses to the optic flow components were combined, a decrease in MEG beta-band (17–23 Hz) power was found in regions extending beyond the calcarine sulcus to the posterior parietal lobe (inferior to IPS), indicating the importance of structured motion in this region. However, only one cortical area, within or near the V5/hMT+ complex, responded to all three spiral-space components (expansion, contraction, and rotation) and showed no selectivity for global translation or deformation: we term this area hMSTs. This is the first demonstration of an exclusive region for spiral space in the human brain and suggests a functional role better suited to preliminary analysis of ego-motion than surface pose, which would involve deformation. We also observed that the rotation condition activated the cerebellum, suggesting its involvement in visually mediated control of postural adjustment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review describes the oculo-visual problems likely to be encountered in Parkinson's disease (PD) with special reference to three questions: (1) are there visual symptoms characteristic of the prodromal phase of PD, (2) is PD dementia associated with specific visual changes, and (3) can visual symptoms help in the differential diagnosis of the parkinsonian syndromes, viz. PD, progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and corticobasal degeneration (CBD)? Oculo-visual dysfunction in PD can involve visual acuity, dynamic contrast sensitivity, colour discrimination, pupil reactivity, eye movement, motion perception, and visual processing speeds. In addition, disturbance of visuo-spatial orientation, facial recognition problems, and chronic visual hallucinations may be present. Prodromal features of PD may include autonomic system dysfunction potentially affecting pupil reactivity, abnormal colour vision, abnormal stereopsis associated with postural instability, defects in smooth pursuit eye movements, and deficits in visuo-motor adaptation, especially when accompanied by idiopathic rapid eye movement (REM) sleep behaviour disorder. PD dementia is associated with the exacerbation of many oculo-visual problems but those involving eye movements, visuo-spatial function, and visual hallucinations are most characteristic. Useful diagnostic features in differentiating the parkinsonian symptoms are the presence of visual hallucinations, visuo-spatial problems, and variation in saccadic eye movement dysfunction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The article explores the possibilities of formalizing and explaining the mechanisms that support spatial and social perspective alignment sustained over the duration of a social interaction. The basic proposed principle is that in social contexts the mechanisms for sensorimotor transformations and multisensory integration (learn to) incorporate information relative to the other actor(s), similar to the "re-calibration" of visual receptive fields in response to repeated tool use. This process aligns or merges the co-actors' spatial representations and creates a "Shared Action Space" (SAS) supporting key computations of social interactions and joint actions; for example, the remapping between the coordinate systems and frames of reference of the co-actors, including perspective taking, the sensorimotor transformations required for lifting jointly an object, and the predictions of the sensory effects of such joint action. The social re-calibration is proposed to be based on common basis function maps (BFMs) and could constitute an optimal solution to sensorimotor transformation and multisensory integration in joint action or more in general social interaction contexts. However, certain situations such as discrepant postural and viewpoint alignment and associated differences in perspectives between the co-actors could constrain the process quite differently. We discuss how alignment is achieved in the first place, and how it is maintained over time, providing a taxonomy of various forms and mechanisms of space alignment and overlap based, for instance, on automaticity vs. control of the transformations between the two agents. Finally, we discuss the link between low-level mechanisms for the sharing of space and high-level mechanisms for the sharing of cognitive representations. © 2013 Pezzulo, Iodice, Ferraina and Kessler.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: The purpose of this study was to determine the extent to which mobility indices (such as walking speed and postural sway), motor initiation, and cognitive function, specifically executive functions, including spatial planning, visual attention, and within participant variability, differentially predicted collisions in the near and far sides of the road with increasing age. Methods: Adults aged over 45 years participated in cognitive tests measuring executive function and visual attention (using Useful Field of View; UFoV®), mobility assessments (walking speed, sit-to-stand, self-reported mobility, and postural sway assessed using motion capture cameras), and gave road crossing choices in a two-way filmed real traffic pedestrian simulation. Results: A stepwise regression model of walking speed, start-up delay variability, and processing speed) explained 49.4% of the variance in near-side crossing errors. Walking speed, start-up delay measures (average & variability), and spatial planning explained 54.8% of the variance in far-side unsafe crossing errors. Start-up delay was predicted by walking speed only (explained 30.5%). Conclusion: Walking speed and start-up delay measures were consistent predictors of unsafe crossing behaviours. Cognitive measures, however, differentially predicted near-side errors (processing speed), and far-side errors (spatial planning). These findings offer potential contributions for identifying and rehabilitating at-risk older pedestrians.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tests of postural stability have provided some evidence of a link between deficits in gross motor skills and developmental dyslexia. The ordinal-level scales used previously, however, have limited measurement sensitivity, and no studies have investigated motor performance during walking in participants with dyslexia. The purpose of this study was to investigate if continuous-scaled measures of standing balance and gait could discriminate between groups of impaired and normal readers when investigators were blind to group membership during testing. Children with dyslexia (n=22) and controls (n=18), aged 10-12 years, performed walking tests at four different speeds (slow-preferred-fast-very fast) on an even and an uneven surface, and tests of unperturbed and perturbed body sway during standing. Body movements were registered by a triaxial accelerometer over the lower trunk, and measures of reaction time, body sway, walking speed, step length and cadence were calculated. Results were controlled for gender differences. Tests of standing balance with eyes closed did not discriminate between groups. All unperturbed standing tests with eyes open showed significant group differences (P<0.05) and classified correctly 70-77.5% of the subjects into their respective groups. Mean walking speed during very fast walking on both flat and uneven surface was ≥0.2 m/s (P≤0.01) faster for controls than for the group with dyslexia. This test classified 77.5% and 85% of the subjects correctly on flat and uneven surface, respectively Cadence at preferred or very fast speed did not differ statistically between groups, but revealed significant group differences when all subjects were compared at a normalised walking speed (P≤0.04). Very fast walking speed as well as cadence at a normalised speed discriminated better between groups when subjects were walking on an uneven surface compared to a flat floor. Continuous-scaled walking tests performed in field settings may be suitable for motor skill assessment as a component of a screening tool for developmental dyslexia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study is to accurately distinguish Parkinson's disease (PD) participants from healthy controls using self-administered tests of gait and postural sway. Using consumer-grade smartphones with in-built accelerometers, we objectively measure and quantify key movement severity symptoms of Parkinson's disease. Specifically, we record tri-axial accelerations, and extract a range of different features based on the time and frequency-domain properties of the acceleration time series. The features quantify key characteristics of the acceleration time series, and enhance the underlying differences in the gait and postural sway accelerations between PD participants and controls. Using a random forest classifier, we demonstrate an average sensitivity of 98.5% and average specificity of 97.5% in discriminating PD participants from controls. © 2014 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whole Body Vibrations consist of a vibration stimulus mechanically transferred to the body. The impact of vibration treatment on specific muscular activity, neuromuscular, and postural control has been widely studied. We investigated whole body vibration (WBV) effect on oxygen uptake and electromyographic signal of the rectus femoris muscle during static and dynamic squat. Fourteen healthy subjects performed a static and dynamic squat with and without vibration. During the vibration exercises, a significant increase was found in oxygen uptake (P=0.05), which increased by 44% during the static squat and 29.4% during the dynamic squat. Vibration increased heart rate by 11.1 ± 9.1 beats.min-1 during the static squat and 7.9 ± 8.3 beats.min-1 during the dynamic squat. No significant changes were observed in rate of perceived exertion between the exercises with and without vibration. The results indicate that the static squat with WBV produced higher neuromuscular and cardiorespiratory system activation for exercise duration ?60 sec. Otherwise, if the single bout duration was higher than 60 sec, the greater cardiorespiratory system activation was achieved during the dynamic squat with WBV while higher neuromuscular activation was still obtained with the static exercise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work is to contribute to the analysis and characterization of training with whole body vibration (WBV) and the resultant neuromuscular response. WBV aims to mechanically activate muscle by eliciting stretch reflexes. Generally, surface electromyography is utilized to assess muscular response elicited by vibrations. However, EMG analysis could potentially bring to erroneous conclusions if not accurately filtered. Tiny and lightweight MEMS accelerometers were found helpful in monitoring muscle motion. Displacements were estimated integrating twice the acceleration data after gravity and small postural subject adjustments contribution removal. Results showed the relevant presence of motion artifacts on EMG recordings, the high correlation between muscle motion and EMG activity and how resonance frequencies and dumping factors depended on subject and his positioning onto the vibrating platform. Stimulations at the resonant frequency maximize muscles lengthening and in turn, muscle spindle solicitation , which may produce more muscle activation. Local mechanical stimulus characterization (Le, muscle motion analysis) could be meaningful in discovering proper muscle stimulation and may contribute to suggest appropriate and effective WBV exercise protocols. ©2009 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To test the practicality and effectiveness of cheap, ubiquitous, consumer-grade smartphones to discriminate Parkinson’s disease (PD) subjects from healthy controls, using self-administered tests of gait and postural sway. Background: Existing tests for the diagnosis of PD are based on subjective neurological examinations, performed in-clinic. Objective movement symptom severity data, collected using widely-accessible technologies such as smartphones, would enable the remote characterization of PD symptoms based on self-administered, behavioral tests. Smartphones, when backed up by interviews using web-based videoconferencing, could make it feasible for expert neurologists to perform diagnostic testing on large numbers of individuals at low cost. However, to date, the compliance rate of testing using smart-phones has not been assessed. Methods: We conducted a one-month controlled study with twenty participants, comprising 10 PD subjects and 10 controls. All participants were provided identical LG Optimus S smartphones, capable of recording tri-axial acceleration. Using these smartphones, patients conducted self-administered, short (less than 5 minute) controlled gait and postural sway tests. We analyzed a wide range of summary measures of gait and postural sway from the accelerometry data. Using statistical machine learning techniques, we identified discriminating patterns in the summary measures in order to distinguish PD subjects from controls. Results: Compliance was high all 20 participants performed an average of 3.1 tests per day for the duration of the study. Using this test data, we demonstrated cross-validated sensitivity of 98% and specificity of 98% in discriminating PD subjects from healthy controls. Conclusions: Using consumer-grade smartphone accelerometers, it is possible to distinguish PD from healthy controls with high accuracy. Since these smartphones are inexpensive (around $30 each) and easily available, and the tests are highly non-invasive and objective, we envisage that this kind of smartphone-based testing could radically increase the reach and effectiveness of experts in diagnosing PD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aims of this thesis were to investigate the neuropsychological, neurophysiological, and cognitive contributors to mobility changes with increasing age. In a series of studies with adults aged 45-88 years, unsafe pedestrian behaviour and falls were investigated in relation to i) cognitive functions (including response time variability, executive function, and visual attention tests), ii) mobility assessments (including gait and balance and using motion capture cameras), iii) motor initiation and pedestrian road crossing behavior (using a simulated pedestrian road scene), iv) neuronal and functional brain changes (using a computer based crossing task with magnetoencephalography), and v) quality of life questionnaires (including fear of falling and restricted range of travel). Older adults are more likely to be fatally injured at the far-side of the road compared to the near-side of the road, however, the underlying mobility and cognitive processes related to lane-specific (i.e. near-side or far-side) pedestrian crossing errors in older adults is currently unknown. The first study explored cognitive, motor initiation, and mobility predictors of unsafe pedestrian crossing behaviours. The purpose of the first study (Chapter 2) was to determine whether collisions at the near-side and far-side would be differentially predicted by mobility indices (such as walking speed and postural sway), motor initiation, and cognitive function (including spatial planning, visual attention, and within participant variability) with increasing age. The results suggest that near-side unsafe pedestrian crossing errors are related to processing speed, whereas far-side errors are related to spatial planning difficulties. Both near-side and far-side crossing errors were related to walking speed and motor initiation measures (specifically motor initiation variability). The salient mobility predictors of unsafe pedestrian crossings determined in the above study were examined in Chapter 3 in conjunction with the presence of a history of falls. The purpose of this study was to determine the extent to which walking speed (indicated as a salient predictor of unsafe crossings and start-up delay in Chapter 2), and previous falls can be predicted and explained by age-related changes in mobility and cognitive function changes (specifically within participant variability and spatial ability). 53.2% of walking speed variance was found to be predicted by self-rated mobility score, sit-to-stand time, motor initiation, and within participant variability. Although a significant model was not found to predict fall history variance, postural sway and attentional set shifting ability was found to be strongly related to the occurrence of falls within the last year. Next in Chapter 4, unsafe pedestrian crossing behaviour and pedestrian predictors (both mobility and cognitive measures) from Chapter 2 were explored in terms of increasing hemispheric laterality of attentional functions and inter-hemispheric oscillatory beta power changes associated with increasing age. Elevated beta (15-35 Hz) power in the motor cortex prior to movement, and reduced beta power post-movement has been linked to age-related changes in mobility. In addition, increasing recruitment of both hemispheres has been shown to occur and be beneficial to perform similarly to younger adults in cognitive tasks (Cabeza, Anderson, Locantore, & McIntosh, 2002). It has been hypothesised that changes in hemispheric neural beta power may explain the presence of more pedestrian errors at the farside of the road in older adults. The purpose of the study was to determine whether changes in age-related cortical oscillatory beta power and hemispheric laterality are linked to unsafe pedestrian behaviour in older adults. Results indicated that pedestrian errors at the near-side are linked to hemispheric bilateralisation, and neural overcompensation post-movement, 4 whereas far-side unsafe errors are linked to not employing neural compensation methods (hemispheric bilateralisation). Finally, in Chapter 5, fear of falling, life space mobility, and quality of life in old age were examined to determine their relationships with cognition, mobility (including fall history and pedestrian behaviour), and motor initiation. In addition to death and injury, mobility decline (such as pedestrian errors in Chapter 2, and falls in Chapter 3) and cognition can negatively affect quality of life and result in activity avoidance. Further, number of falls in Chapter 3 was not significantly linked to mobility and cognition alone, and may be further explained by a fear of falling. The objective of the above study (Study 2, Chapter 3) was to determine the role of mobility and cognition on fear of falling and life space mobility, and the impact on quality of life measures. Results indicated that missing safe pedestrian crossing gaps (potentially indicating crossing anxiety) and mobility decline were consistent predictors of fear of falling, reduced life space mobility, and quality of life variance. Social community (total number of close family and friends) was also linked to life space mobility and quality of life. Lower cognitive functions (particularly processing speed and reaction time) were found to predict variance in fear of falling and quality of life in old age. Overall, the findings indicated that mobility decline (particularly walking speed or walking difficulty), processing speed, and intra-individual variability in attention (including motor initiation variability) are salient predictors of participant safety (mainly pedestrian crossing errors) and wellbeing with increasing age. More research is required to produce a significant model to explain the number of falls.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The principal theme of this thesis is the effect of yoked prisms on body posture and egocentric perception. Yoked prisms have been clinically used in the management of a variety of visual and neuro-motor dysfunctions. Most studies have been conducted in pathological populations by studying the effects of prismatic adaptation, without distinguishing short and long term effects. In this study, postural and perceptual prismatic effects have been studied by preventing prism adaptation. A healthy population was selected in order to investigate the immediate prismatic effects, when there is no obvious benefit from their use for the individual. Posturography was used to assess changes in weight distribution and shifts in centre of pressure (barycentre). In addition, photographic analyses were used to assess effects on posture on the x and z axis. Experiments with space board and visual midline shift were used for the evaluation of spatial perception and egocentric localisation. One pair of 8 Δ yoked prisms base left (BL) and one pair of 8 Δ yoked prisms base up (BU) were applied randomly and compared to a pair of plano lenses. Results suggest that immediate prismatic effects take place on a perceptual level and are reflected on an altered body posture respectively without significant changes in weight distribution. Yoked prisms BL showed a rightward rotational effect on spatial perception by expanding space on the z axis when viewing through the base of the prism and constricting space through the apex of the prism. Body posture responded respectively to what was visually perceived by altering posture. A rightward shift and tilt of the head was recorded along with the hips shift and shoulders tilt in the dame direction. Additionally, right shoulder shifted backwards and an angular midline shift to the right was recorded. The egocentric localisation was affected by shifting the midline perception to the left. Yoked prisms BU resulted on a head shift forward and a reduction of the head-neck angle by bringing the chin closer to the chest. The egocentric localisation was altered on the vertical axis providing subjects the perception that their eye level was higher during the experiment. In conclusion, yoked prisms seemed to induce changes in body posture, mainly in the upper body and head, without any significant changes in weight distribution. These changes are partially reflected in spatial perception tests and egocentric localisation before any prismatic adaptation takes place.