11 resultados para Polycrystalline grains

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fifty seven short fatigue cracks in the Ni-base superalloy AP1 have been examined, to ascertain how the paths taken by growing fatigue cracks are determined. The observations were made on the surface of a smooth specimen, and on the exposed fracture surfaces. Three dimensional reconstructions of the vulnerable microstructures in the vicinity of the cracks were produced. Initiation occurred in mode II, with the lines of intersection of the initiation sites with the specimen top surface orientated at approximately 45° to the tensile axis. These initiation sites developed in slip bands which crossed a large grain and at least one other grain via a grain boundary with a low angle of misorientation. 'River markings' on one of the initiation facets, indicated that the crack first opened from the top centre of the initiation grain. Subsequent to initiation, the growth paths of these cracks are related to the misorientations of the grains and the progress of the crack front.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spherical scratch tests were conducted in individual grains of a randomly oriented polycrystalline body-centered-cubic (bcc) Ti-Nb alloy. For each grain, scratch tests were conducted at four different levels of normal load, which resulted in varying amounts of plastic strain during indentation. The results show a dependence of the horizontal load component on the crystallographic orientation and on the amount of plastic strain. The component of the horizontal force that resulted from plastic deformation was found to correlate with the active slip systems for the particular grain orientation. © 2010 Materials Research Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microcompression specimens, 10–15 µm in diameter by 20–30 µm in height, were produced from individual parent grains in a polycrystalline U–13 at.%Nb shape-memory alloy using the focused ion beam technique. The specimens were tested in a nanoindentation instrument with a flat diamond tip to investigate stress–strain behavior as a function of crystallographic orientation. The results are in qualitative agreement with a single-crystal accommodation strain (Bain strain) model of the shape-memory effect for this alloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We conducted nanoindentation to explore the hardness and elastic properties of silica stishovite, synthesized at high pressure and quenched to ambient conditions. A total of 10 crystallographic orientations were examined on selected grains with a maximum load of 4 or 20 mN. We observed discontinuity in the load-displacement curve (pop-in) for the [2 5 over(1, -)] and [6 2 over(1, -)] grains subjected to a maximum load of 20 mN. The single-crystal hardness at high plastic deformation is quasi-isotropic with an average of 32 ± 1 GPa, similar to the polycrystalline hardness reported earlier; the theoretical hardness determined from the experiments is about 54 ± 3 GPa. These two hardnesses suggest that stishovite is one of the hardest oxides. The measured indentation moduli are close to the predictions at low load (minor plasticity) but are considerably lower at high load (high plasticity). Both indentation hardness and modulus decrease with increasing plasticity. Our results underscore the necessity of considering the degree of plastic deformation when interpreting hardness and elastic moduli from indentation experiments. © 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The long crack threshold behaviour of polycrystalline Udimet 720 has been investigated. Faceted crack growth is seen near threshold when the monotonic crack tip plastic zone is contained within the coarsest grain size. At very high load ratios R (=P min/P max) it is possiblefor the monotonic crack tip plastic zone to exceed the coarsest grain size throughout the entire crack growth regime and non1aceted structure insensitive crack growth is then seen down to threshold. Intrinsic threshold values were obtained for non1aceted and faceted crack growth using a constant K max, increasing K min, computer controlled load shedding technique (K is stress intensity factor). Very high R values are obtained at threshold using this technique (0.75-0.95), eliminating closure effects, so the intrinsic resistance of the material to crack propagation is reflected in these values. The intrinsic non1aceted threshold value ΔK th is lower (2.3 MN m -3/2) than the intrinsicfaceted ΔK th value (4.8 MN m -3/2). This is thought to reflect not only the effect of crack branching and deflection (in the faceted case) on the crack driving force, but also the inherent difference in resistance of the material to the two different crack propagation micromechanisms. © 1993 The Institute of Materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study was made of notch effects on the cleavage fracture of polycrystalline zinc. It was seen that the nominal fracture stress of SENB specimens was independent of notch angle. The maximum tensile stress below the notch at fracture in SENB specimens was shown to be different from the tensile stress at fracture in tensile testpieces over a temperature range from −196 to −17°C. The notch root strain at fracture was found to be the same as the uniaxial tensile fracture strain over this temperature interval. These results were interpreted as showing the cleavage fracture of polycrystalline zinc to be shear-stress or initiation controlled, as predicted by Stroh's dislocation model of cleavage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the impact of methane concentration in hydrogen plasma on the growth of large-grained polycrystalline diamond (PCD) films and its hydrogen impurity incorporation. The diamond samples were produced using high CH4 concentration in H2 plasma and high power up to 4350 W and high pressure (either 105 or 110 Torr) in a microwave plasma chemical vapor deposition (MPCVD) system. The thickness of the free-standing diamond films varies from 165 µm to 430 µm. Scanning electron microscopy (SEM), micro-Raman spectroscopy and Fourier-transform infrared (FTIR) spectroscopy were used to characterize the morphology, crystalline and optical quality of the diamond samples, and bonded hydrogen impurity in the diamond films, respectively. Under the conditions employed here, when methane concentration in the gas phase increases from 3.75% to 7.5%, the growth rate of the PCD films rises from around 3.0 µm/h up to 8.5 µm/h, and the optical active bonded hydrogen impurity content also increases more than one times, especially the two CVD diamond specific H related infrared absorption peaks at 2818 and 2828 cm−1 rise strongly; while the crystalline and optical quality of the MCD films decreases significantly, namely structural defects and non-diamond carbon phase content also increases a lot with increasing of methane concentration. Based on the results, the relationship between methane concentration and diamond growth rate and hydrogen impurity incorporation including the form of bonded infrared active hydrogen impurity in CVD diamonds was analyzed and discussed. The effect of substrate temperature on diamond growth was also briefly discussed. The experimental findings indicate that bonded hydrogen impurity in CVD diamond films mainly comes from methane rather than hydrogen in the gas source, and thus can provide experimental evidence for the theoretical study of the standard methyl species dominated growth mechanism of CVD diamonds grown with methane/hydrogen mixtures.