14 resultados para Polychlorinated biphenyls (PCB)
em Aston University Research Archive
Resumo:
This paper presents two hybrid genetic algorithms (HGAs) to optimize the component placement operation for the collect-and-place machines in printed circuit board (PCB) assembly. The component placement problem is to optimize (i) the assignment of components to a movable revolver head or assembly tour, (ii) the sequence of component placements on a stationary PCB in each tour, and (iii) the arrangement of component types to stationary feeders simultaneously. The objective of the problem is to minimize the total traveling time spent by the revolver head for assembling all components on the PCB. The major difference between the HGAs is that the initial solutions are generated randomly in HGA1. The Clarke and Wright saving method, the nearest neighbor heuristic, and the neighborhood frequency heuristic are incorporated into HGA2 for the initialization procedure. A computational study is carried out to compare the algorithms with different population sizes. It is proved that the performance of HGA2 is superior to HGA1 in terms of the total assembly time.
Resumo:
It is indisputable that printed circuit boards (PCBs) play a vital role in our daily lives. With the ever-increasing applications of PCBs, one of the crucial ways to increase a PCB manufacturer’s competitiveness in terms of operation efficiency is to minimize the production time so that the products can be introduced to the market sooner. Optimal Production Planning for PCB Assembly is the first book to focus on the optimization of the PCB assembly lines’ efficiency. This is done by: • integrating the component sequencing and the feeder arrangement problems together for both the pick-and-place machine and the chip shooter machine; • constructing mathematical models and developing an efficient and effective heuristic solution approach for the integrated problems for both types of placement machines, the line assignment problem, and the component allocation problem; and • developing a prototype of the PCB assembly planning system. The techniques proposed in Optimal Production Planning for PCB Assembly will enable process planners in the electronics manufacturing industry to improve the assembly line’s efficiency in their companies. Graduate students in operations research can familiarise themselves with the techniques and the applications of mathematical modeling after reading this advanced introduction to optimal production planning for PCB assembly.
Resumo:
Purpose – The purpose of this paper is to investigate the optimization for a placement machine in printed circuit board (PCB) assembly when family setup strategy is adopted. Design/methodology/approach – A complete mathematical model is developed for the integrated problem to optimize feeder arrangement and component placement sequences so as to minimize the makespan for a set of PCB batches. Owing to the complexity of the problem, a specific genetic algorithm (GA) is proposed. Findings – The established model is able to find the minimal makespan for a set of PCB batches through determining the feeder arrangement and placement sequences. However, exact solutions to the problem are not practical due to the complexity. Experimental tests show that the proposed GA can solve the problem both effectively and efficiently. Research limitations/implications – When a placement machine is set up for production of a set of PCB batches, the feeder arrangement of the machine together with the component placement sequencing for each PCB type should be solved simultaneously so as to minimize the overall makespan. Practical implications – The paper investigates the optimization for PCB assembly with family setup strategy, which is adopted by many PCB manufacturers for reducing both setup costs and human errors. Originality/value – The paper investigates the feeder arrangement and placement sequencing problems when family setup strategy is adopted, which has not been studied in the literature.
Resumo:
This paper formulates several mathematical models for determining the optimal sequence of component placements and assignment of component types to feeders simultaneously or the integrated scheduling problem for a type of surface mount technology placement machines, called the sequential pick-andplace (PAP) machine. A PAP machine has multiple stationary feeders storing components, a stationary working table holding a printed circuit board (PCB), and a movable placement head to pick up components from feeders and place them to a board. The objective of integrated problem is to minimize the total distance traveled by the placement head. Two integer nonlinear programming models are formulated first. Then, each of them is equivalently converted into an integer linear type. The models for the integrated problem are verified by two commercial packages. In addition, a hybrid genetic algorithm previously developed by the authors is adopted to solve the models. The algorithm not only generates the optimal solutions quickly for small-sized problems, but also outperforms the genetic algorithms developed by other researchers in terms of total traveling distance.
Resumo:
Purpose – This paper sets out to study a production-planning problem for printed circuit board (PCB) assembly. A PCB assembly company may have a number of assembly lines for production of several product types in large volume. Design/methodology/approach – Pure integer linear programming models are formulated for assigning the product types to assembly lines, which is the line assignment problem, with the objective of minimizing the total production cost. In this approach, unrealistic assignment, which was suffered by previous researchers, is avoided by incorporating several constraints into the model. In this paper, a genetic algorithm is developed to solve the line assignment problem. Findings – The procedure of the genetic algorithm to the problem and a numerical example for illustrating the models are provided. It is also proved that the algorithm is effective and efficient in dealing with the problem. Originality/value – This paper studies the line assignment problem arising in a PCB manufacturing company in which the production volume is high.
Resumo:
The collect-and-place machine is one of the most widely used placement machines for assembling electronic components on the printed circuit boards (PCBs). Nevertheless, the number of researches concerning the optimisation of the machine performance is very few. This motivates us to study the component scheduling problem for this type of machine with the objective of minimising the total assembly time. The component scheduling problem is an integration of the component sequencing problem, that is, the sequencing of component placements; and the feeder arrangement problem, that is, the assignment of component types to feeders. To solve the component scheduling problem efficiently, a hybrid genetic algorithm is developed in this paper. A numerical example is used to compare the performance of the algorithm with different component grouping approaches and different population sizes.
Resumo:
In printed circuit board (PCB) assembly, the efficiency of the component placement process is dependent on two interrelated issues: the sequence of component placement, that is, the component sequencing problem, and the assignment of component types to feeders of the placement machine, that is, the feeder arrangement problem. In cases where some components with the same type are assigned to more than one feeder, the component retrieval problem should also be considered. Due to their inseparable relationship, a hybrid genetic algorithm is adopted to solve these three problems simultaneously for a type of PCB placement machines called the sequential pick-and-place (PAP) machine in this paper. The objective is to minimise the total distance travelled by the placement head for assembling all components on a PCB. Besides, the algorithm is compared with the methods proposed by other researchers in order to examine its effectiveness and efficiency.
Resumo:
A chip shooter machine for electronic components assembly has a movable feeder carrier holding components, a movable X-Y table carrying a printed circuit board (PCB), and a rotary turret having multiple assembly heads. This paper presents a hybrid genetic algorithm to optimize the sequence of component placements for a chip shooter machine. The objective of the problem is to minimize the total traveling distance of the X-Y table or the board. The genetic algorithm developed in the paper hybridizes the nearest neighbor heuristic, and an iterated swap procedure, which is a new improved heuristic. We have compared the performance of the hybrid genetic algorithm with that of the approach proposed by other researchers and have demonstrated our algorithm is superior in terms of the distance traveled by the X-Y table or the board.
Resumo:
This paper focuses on minimizing printed circuit board (PCB) assembly time for a chipshootermachine, which has a movable feeder carrier holding components, a movable X–Y table carrying a PCB, and a rotary turret with multiple assembly heads. The assembly time of the machine depends on two inter-related optimization problems: the component sequencing problem and the feeder arrangement problem. Nevertheless, they were often regarded as two individual problems and solved separately. This paper proposes two complete mathematical models for the integrated problem of the machine. The models are verified by two commercial packages. Finally, a hybrid genetic algorithm previously developed by the authors is presented to solve the model. The algorithm not only generates the optimal solutions quickly for small-sized problems, but also outperforms the genetic algorithms developed by other researchers in terms of total assembly time.
Resumo:
A chip shooter machine for electronic component assembly has a movable feeder carrier, a movable X–Y table carrying a printed circuit board (PCB), and a rotary turret with multiple assembly heads. This paper presents a hybrid genetic algorithm (HGA) to optimize the sequence of component placements and the arrangement of component types to feeders simultaneously for a chip shooter machine, that is, the component scheduling problem. The objective of the problem is to minimize the total assembly time. The GA developed in the paper hybridizes different search heuristics including the nearest-neighbor heuristic, the 2-opt heuristic, and an iterated swap procedure, which is a new improved heuristic. Compared with the results obtained by other researchers, the performance of the HGA is superior in terms of the assembly time. Scope and purpose When assembling the surface mount components on a PCB, it is necessary to obtain the optimal sequence of component placements and the best arrangement of component types to feeders simultaneously in order to minimize the total assembly time. Since it is very difficult to obtain the optimality, a GA hybridized with several search heuristics is developed. The type of machines being studied is the chip shooter machine. This paper compares the algorithm with a simple GA. It shows that the performance of the algorithm is superior to that of the simple GA in terms of the total assembly time.
Resumo:
A chip shooter machine in printed circuit board (PCB) assembly has three movable mechanisms: an X-Y table carrying a PCB, a feeder carrier with several feeders holding components and a rotary turret with multiple assembly heads to pick up and place components. In order to get the minimal placement or assembly time for a PCB on the machine, all the components on the board should be placed in a perfect sequence, and the components should be set up on a right feeder, or feeders since two feeders can hold the same type of components, and additionally, the assembly head should retrieve or pick up a component from a right feeder. The entire problem is very complicated, and this paper presents a genetic algorithm approach to tackle it.
Resumo:
The reliability of the printed circuit board assembly under dynamic environments, such as those found onboard airplanes, ships and land vehicles is receiving more attention. This research analyses the dynamic characteristics of the printed circuit board (PCB) supported by edge retainers and plug-in connectors. By modelling the wedge retainer and connector as providing simply supported boundary condition with appropriate rotational spring stiffnesses along their respective edges with the aid of finite element codes, accurate natural frequencies for the board against experimental natural frequencies are obtained. For a PCB supported by two opposite wedge retainers and a plug-in connector and with its remaining edge free of any restraint, it is found that these real supports behave somewhere between the simply supported and clamped boundary conditions and provide a percentage fixity of 39.5% more than the classical simply supported case. By using an eigensensitivity method, the rotational stiffnesses representing the boundary supports of the PCB can be updated effectively and is capable of representing the dynamics of the PCB accurately. The result shows that the percentage error in the fundamental frequency of the PCB finite element model is substantially reduced from 22.3% to 1.3%. The procedure demonstrated the effectiveness of using only the vibration test frequencies as reference data when the mode shapes of the original untuned model are almost identical to the referenced modes/experimental data. When using only modal frequencies in model improvement, the analysis is very much simplified. Furthermore, the time taken to obtain the experimental data will be substantially reduced as the experimental mode shapes are not required.In addition, this thesis advocates a relatively simple method in determining the support locations for maximising the fundamental frequency of vibrating structures. The technique is simple and does not require any optimisation or sequential search algorithm in the analysis. The key to the procedure is to position the necessary supports at positions so as to eliminate the lower modes from the original configuration. This is accomplished by introducing point supports along the nodal lines of the highest possible mode from the original configuration, so that all the other lower modes are eliminated by the introduction of the new or extra supports to the structure. It also proposes inspecting the average driving point residues along the nodal lines of vibrating plates to find the optimal locations of the supports. Numerical examples are provided to demonstrate its validity. By applying to the PCB supported on its three sides by two wedge retainers and a connector, it is found that a single point constraint that would yield maximum fundamental frequency is located at the mid-point of the nodal line, namely, node 39. This point support has the effect of increasing the structure's fundamental frequency from 68.4 Hz to 146.9 Hz, or 115% higher.
Resumo:
Bio-impedance analysis (BIA) provides a rapid, non-invasive technique for body composition estimation. BIA offers a convenient alternative to standard techniques such as MRI, CT scan or DEXA scan for selected types of body composition analysis. The accuracy of BIA is limited because it is an indirect method of composition analysis. It relies on linear relationships between measured impedance and morphological parameters such as height and weight to derive estimates. To overcome these underlying limitations of BIA, a multi-frequency segmental bio-impedance device was constructed through a series of iterative enhancements and improvements of existing BIA instrumentation. Key features of the design included an easy to construct current-source and compact PCB design. The final device was trialled with 22 human volunteers and measured impedance was compared against body composition estimates obtained by DEXA scan. This enabled the development of newer techniques to make BIA predictions. To add a ‘visual aspect’ to BIA, volunteers were scanned in 3D using an inexpensive scattered light gadget (Xbox Kinect controller) and 3D volumes of their limbs were compared with BIA measurements to further improve BIA predictions. A three-stage digital filtering scheme was also implemented to enable extraction of heart-rate data from recorded bio-electrical signals. Additionally modifications have been introduced to measure change in bio-impedance with motion, this could be adapted to further improve accuracy and veracity for limb composition analysis. The findings in this thesis aim to give new direction to the prediction of body composition using BIA. The design development and refinement applied to BIA in this research programme suggest new opportunities to enhance the accuracy and clinical utility of BIA for the prediction of body composition analysis. In particular, the use of bio-impedance to predict limb volumes which would provide an additional metric for body composition measurement and help distinguish between fat and muscle content.