12 resultados para Polyacrylic acid polymers

em Aston University Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aqueous semi-solid polymeric gels, such as those based on hydroxyethylcellulose (HEC) and polyacrylic acid (e.g. Carbopol®), have a long history of use in vaginal drug delivery. However, despite their ubiquity, they often provide sub-optimal clinical performance, due to poor mucosal retention and limited solubility for poorly water-soluble actives. These issues are particularly pertinent for vaginal HIV microbicides, since many lead candidates are poorly water-soluble and where a major goal is the development of a coitally independent, once daily gel product. In this study, we report the use of a non-aqueous silicone elastomer gel for vaginal delivery of the HIV-1 entry inhibitor maraviroc. In vitro rheological, syringeability and retention studies demonstrated enhanced performance for silicone gels compared with a conventional aqueous HEC gel, while testing of the gels in the slug model confirmed a lack of mucosal irritancy. Pharmacokinetic studies following single dose vaginal administration of a maraviroc silicone gel in rhesus macaques showed higher and sustained MVC levels in vaginal fluid, vaginal tissue and plasma compared with a HEC gel containing the same maraviroc loading. The results demonstrate that non-aqueous silicone gels have potential as a formulation platform for coitally independent vaginal HIV microbicides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is concerned with the effect of polymer structure on miscibility of the three component blends based on poly(lactic acid) (PLA) with using blending techniques. The examination of novel PLA homologues (pre-synthesised poly(a-esters)), including a range of aliphatic and aromatic poly(a-esters) is an important aspect of the work. Because of their structural simplicity and similarity to PLA, they provide an ideal system to study the effect of polyester structures on the miscibility of PLA polymer blends. The miscibility behaviour of the PLA homologues is compared with other aliphatic polyesters (e.g. poly(e-caprolactone) (PCL), poly(hydroxybutyrate hydroxyvalerate) (P(HB-HV)), together with a series of cellulose-based polymers (e.g. cellulose acetate butyrate (CAB)). The work started with the exploration the technique used for preliminary observation of the miscibility of blends referred to as “a rapid screening method” and then the miscibility of binary blends was observed and characterised by percent transmittance together with the Coleman and Painter miscibility approach. However, it was observed that symmetrical structures (e.g. a1(dimethyl), a2(diethyl)) promote the well-packing which restrict their chains from intermingling into poly(L-lactide) (PLLA) chains and leads the blends to be immiscible, whereas, asymmetrical structures (e.g. a4(cyclohexyl)) behave to the contrary. a6(chloromethyl-methyl) should interact well with PLLA because of the polar group of chloride to form interactions, but it does not. It is difficult to disrupt the helical structure of PLLA. PLA were immiscible with PCL, P(HB-HV), or compatibiliser (e.g. G40, LLA-co-PCL), but miscible with CAB which is a hydrogen-bonded polymer. However, these binary blends provided a useful indication for the exploration the novel three component blends. In summary, the miscibility of the three-component blends are miscible even if only two polymers are miscible. This is the benefit for doing the three components blend in this thesis, which is not an attempt to produce a theoretical explanation for the miscibility of three components blend system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the work described was to identify and synthesize a range of biodegradable hypercoiling or hydrophobically associating polymers to mimic natural apoproteins, such as those found in lung surfactant or plasma apolipoproteins. Stirred interfacial polymerization was used to synthesize potentially biodegradable aromatic polyamides (Mw of 12,000-26,000) based on L-Iysine, L-Iysine ethyl ester, L-ornithine and DL-diaminopropionic acid, by reaction with isophthaloyl chloride. A similar technique was used to synthesize aliphatic polyamides based on L-Iysine ethyl ester and either adipoyl chloride or glutaryl chloride resulting in the synthesis of poly(lysine ethyl ester adipamide) [PLETESA] or poly(lysine ethyl ester glutaramide) (Mw of 126,000 and 26,000, respectively). PLETESA was found to be soluble in both polar and non-polar solvents and the hydrophobic/hydrophilic balance could be modified by partial saponification (66-75%) of the ethyl ester side chains. Surface or interfacial tension/pH profiles were used to assess the conformation of both the poly(isophthalamides) and partially saponified PLETESA in aqueous solution. The results demonstrated that a loss of charge from the polymer was accompanied by an initial fall in surface activity, followed by a rise in activity, and ultimately, by polymer precipitation. These observations were explained by a collapse of the polymer chains into non-surface active intramolecular coils, followed by a transition to an amphipathic conformation, and finally to a collapsed hydrophobe. 2-Dimensional NMR analysis of polymer conformation in polar and non-polar solvents revealed intramolecular associations between the hydrophobic groups within partially saponified PLETESA. Unsaponified PLETESA appeared to form a coiled structure in polar solvents where the ethyl ester side chains were contained within the polymer coil. The implications of the secondary structure of PLETESA and potential biomedical applications are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this project was to investigate the enzyme catalysed modification of synthetic polymers. It was found that an immobilised lipase from Candida antartica (Novozyme 435) catalysed the selective epoxidation of poly(butadiene) in the presence of hydrogen peroxide and catalytic quantities of acetic acid. The cis and trans double bonds of the backbone were epoxidised in yields of up to 60 % whilst the pendent vinyl groups were untouched. The effect of varying a number of reaction parameters was investigated. These studies suggested that higher yields of epoxide could not be obtained because of the conformational properties of the partially epoxidised polymer. Application of this process to the Baeyer-Villiger reaction of poly(vinyl phenyl ketone) and poly(vinyl methyl ketone) were unsuccessful. The lack of reactivity was found to be a property of the polymer rather than the enzymatic system employed. Attempts to modify hydroxyl containing polymers and polymers bearing active esters close to the polymer backbone were unsuccessful. Steric factors appear to be the most important influence on the outcome of the reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of ester plasticizers and copolymers on the mechanical properties of the natural biodegradable polymers, poly(3-hydroxybutyrate) [PHB] and poly(lactic acid) [PLA] have been studied after subjecting to melt processing conditions. Ester plasticizers were synthesized from citric, tartaric and maleic acids using various alcohols. A variety of PLA copolymers have also been prepared from poly(ethylene glycol) derivatives using stannous octanoate catalysed ring opening polymerisations of DL-lactide. A novel PLA star copolymer was also prepared from an ethoxylated pentaerythritol. The structures of these copolymers were determined by NMR spectroscopy. The plasticizing effect of the synthesised additives at various concentrations was determined. While certain additives were capable of improving the mechanical properties of PLA, none were effective in PHB. Moreover, it was found that certain combinations of additives exhibited synergistic effects. Possible mechanisms are discussed. Biotic and abiotic degradation studies showed that the plasticizers (esters and copolymers) did not inhibit the biodegradability of PHB or PLA in compost at 60°C. Simple toxicity tests carried out on compost extract and its ability to support the growth of cress seeds was established. PLA was found to be susceptible to limited thermal degradation under melt processing conditions. Conventional phenolic antioxidants showed no significant effect on this process, suggesting that degradation was not predominantly a free radical process. PLA also underwent photo-oxidative degradation with UV light and the process could be accelerated in the presence of a photoactivator such as iron (III) diisononyl dithiocarbamate. The mechanisms for the above processes are discussed. Finally, selected compounds were prepared on a pilot plant scale. Extruded and blown films were prepared containing these additives with conventional polymer processing equipment. The mechanical properties were similar to those obtained with laboratory produced compression moulded films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synthetic routes to polymers possessing functional groups were studied. Direct functionalisation of poly(vinyltoluene) by lithiation and carboxylation resulted in the expected carboxylic acid but reaction was complicated by the production of a mixture of products. Reaction occurred both at the polymer backbone and at the pendant methyl group. Reaction with ethyl formate was also difficult to control and a secondary alcohol was formed even when an excess of the carbonyl compounds was employed. Grignard formation of poly(bromostyrene) was successful but once formed, the derivative rearranged resulting in chain scission and degradation of the polymer. Therefore subsequent reactions of the Grignard reagent with carbonyl groups were unsuccessful in producing functionalised polymers. Reactions of vinyltoluene monomer were more successful. Although complications arose when lithiation and carboxylation of the monomer were carried out using lithium diisopropylamide because the carboxylic acid product reacted with the excess lithium diisopropylamide present, metallation by potassium t-butoxide followed by reaction with 2-(3-chloropropyl)-2-methyl-1,3-dioxalane resulted in the formation of 2-methyl-2(4-(vinylphenyl)-butyl-1,3,-dioxalane. The butyllithium initiated anionic polymerisation of this protected monomer resulted in a polymer which had a very narrow molecular weight distribution (Mw/Mn= 1.05) and subsequent hydrolysis of the polymer resulted in poly(6(vinylphenyl)-hexan-2-one) which was derivatised with 2,4 dinitrophenyl-hydrazine. Functionalisation by modification of the siloxane derivative 3-(methylpropenoxycarbonyl)ltrimethoxysilane was unsuccessful. The acid catalysed exchange reactions of this monomer with alcohols such as eugenol, octan-1-ol, pentan-1-ol, and hexan-1-ol were inefficient, resulting in a mixture of products and unreacted starting materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is primarily concerned with the synthesis and polymerization of 5-methyl-1;3, 2-dioxathiolan-4-one-2-oxide (lactic acid anhydrosulphite (LAAS)) using anionic initiators under various conditions. Poly(lactic acid) is a biodegradable polymer which finds many uses in biomedical applications such as drug-delivery and wound-support systems. For such applications it is desirable to produce polymers having predictable molecular weight distributions and crystallinity, The use of anionic initiators offers a potential route to the creation of living polymers. The synthesis of LAAS was achieved by means of an established route though the procedure was modified to some extent and a new method of purification of the monomer using copper oxides was introduced, Chromatographic purification methods were also examined but found to be ineffective. An unusual impurity was discovered in some syntheses and this was identified by means of 1H and 13C NMR, elemental analysis and GC-MS. Since poly-α-esters having hydroxyl-bearing substituents might be expected to have high equilibrium water contents and hence low surface tension characteristics which might aid bio-compatibility, synthesis of gluconic acid anhydrosulphite was also attempted and the product characterised by 1H and 13C NMR. The kinetics of the decomposition of lactic acid anhydrosulphite by lithium tert-butoxide in nitrobenzene has been examined by means of gas evolution measurements. The kinetics of the reaction with potassium tert-butoxide (and also sec-butyl lithium) in tetrahydrofuran has been studied using calorimetric techniques. LAAS was block co-polymerized with styrene and also with 1,3-butadiene in tetrahydrofuran (in the latter case a statistical co-polymer was also produced).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The identification and quantification of spin adducts and their reduction products (>NOH, >NOR) formed from nitroso compounds and nitrones in EPR and PP during spin trapping techniques have been examined. The nitroxyl yield and polymer bound nitroxyl percentage formed from these spin traps were found to be strongly dependent on the nature of spin trap and radical generator, processing temperature, and irradiation time. The nitroxyl yield and % bound nitroxyl of the spin traps improved significantly in the presence of Trigonox 101 and 2-0H benzophenone. The effect of these spin traps used as normal additive and their spin adducts in the form of EPR-masterbatch on the photo and thermal-oxidation of PP have been studied. Aliphatic nitroso compounds were found to have much better photo-antioxidant activity than nitrones and aromatic nitroso compounds, and their antioxidant activity improved appreciably in the presence of, a free radical generator, Trigonox 101, before and after extraction. The effect of heat, light and oxidising agent (meta-dichloro per benzoic acid) on the nitroxyl yield of nitroso tertiary butane in solution as a model study has been investigated and a cyclic regenerative process involving both chain breaking acceptor and chain breaking donor process has been proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antisense oligodeoxynucleotides can selectively inhibit individual gene expression provided they remain stable at the target site for a sufficient period of time. Thus, the efficacy of antisense oligodeoxynucleotides may be improved by employing a sustained release delivery system which would protect from degradation by nucleases whilst delivering the nucleic acid in a controlled manner to the site of action. Biodegradable polymer films and micro spheres were evaluated as delivery devices for the oligodeoxynucleotides and ribozymes. Polymers such as polylactide, polyglycolide, polyhydroxybutyrate and polyhydroxyvalerate were used due to their biocompatability and non toxic degradation products. Release profiles of antisense nucleic acids from films over 28 days was biphasic, characterised by an initial burst release during the first 48 hours followed by a more sustained release. Release from films of longer antisense nucleic acids was slower compared to shorter nucleic acids. Backbone type also affected release, although to a lesser extent than length. Total release of the nucleic acids is dependent upon polymer degradation, no degradation of the polymer films was evident over the 28 day period, due to the high molecular weight and crystallinity of the polymers required to make solvent cast films. Backbone length and type did not affect release from microspheres, release was generally faster than from films, due to the increased surface area, and low molecular weight polymers which showed signs of degradation over the release period, resulting in a triphasic release profile. An increase in release was observed when sphere size and polymer molecular weight were decreased. The polymer entrapped phosphodiester oligodeoxynucleotides and ribozymes had enhanced stability compared to free oligodeoxynucleotides and ribozymes when incubated in serum. The released nucleic acids were still capable of hybridising to their target sequence, indicating that the fabrication processes did not adversely effect the properties of the antisense nucleic acids. Oligodeoxynucleotides loaded in 2μm spheres had a 10 fold increase in macrophage association compared to free oligodeoxynucleotides. Fluorescent microscopy indicates that the polymer entrapped oligodeoxynucleotide is concentrated inside the cell, whereas free oligodeoxynucleotides are concentrated at the cell membrane. Biodegradable polymers can reduce the limitations of antisense therapy and thus offer a potential therapeutic advantage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work described in this thesis can be broadly divided into two sections. The first being the characterisation of hydrogel polymers in both their hydrated and dehydrated states and the second some aspects of the structural modification of polymers. The characterisation of hydrogel polymers in their dehydrated state (xerogels) involves such techniques as elemental analysis, pyrolysis gas liquid chromatography, infra-red spectroscopy, density determination and surface characterisation by contact angle measurements. The characterisation of some commercially available hydrogel materials was undertaken using such techniques and the results obtained were compared to laboratory synthesised systems in an attempt to assess the value of the combination of techniques employed. In the characterisation of hydrated polymers the amoumt and nature of water present is the single most important factor. The most convenient method of characterising this water involves the use of differential scanning calorimetry (DSC), coupled with total equilibrium water content measurements. DSC distinguishes between non-freezing and freezing water but in addition provides some information on the continuum of states in the freezing water fraction. Two aspects of the structural modification of hydrogel polymers were studied. The first involved the incorporation of acrylamide and substituted acryamide monomers into a copolymer system and an examination of the effect of this on the amino acid interaction of the polymers. The second was the attempted synthesis of cell surface analogues by the attachment of sugar type molecules to the polymer using a variety of reaction methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Various lubricating body fluids at tissue interfaces are composed mainly of combinations of phospholipids and amphipathic apoproteins. The challenge in producing synthetic replacements for them is not replacing the phospholipid, which is readily available in synthetic form, but replacing the apoprotein component, more specifically, its unique biophysical properties rather than its chemistry. The potential of amphiphilic reactive hypercoiling behaviour of poly(styrene-alt-maleic acid) (PSMA) was studied in combination with two diacylphosphatidylcholines (PC) of different chain lengths in aqueous solution. The surface properties of the mixtures were characterized by conventional Langmuir-Wilhelmy balance (surface pressure under compression) and the du Noüy tensiometer (surface tension of the non-compressed mixtures). Surface tension values and 31P NMR demonstrated that self-assembly of polymer-phospholipid mixtures were pH and concentration-dependent. Finally, the particle size and zeta potential measurements of this self-assembly showed that it can form negatively charged nanosized structures that might find use as drug or lipids release systems on interfaces such as the tear film or lung interfacial layers. The structural reorganization was sensitive to the alkyl chain length of the PC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of styrene maleic acid (SMA) co-polymers to extract and purify transmembrane proteins, whilst retaining their native bilayer environment, overcomes many of the disadvantages associated with conventional detergent based procedures. This approach has huge potential for the future of membrane protein structural and functional studies. In this investigation we have systematically tested a range of commercially available SMA polymers, varying in both the ratio of styrene to maleic acid and in total size, for the ability to extract, purify and stabilise transmembrane proteins. Three different membrane proteins (BmrA, LeuT and ZipA) which vary in size and shape were used. Our results show that several polymers can be used to extract membrane proteins comparably to conventional detergents. A styrene:maleic acid ratio of either 2:1 or 3:1, combined with a relatively small average molecular weight (7.5-10 kDa) is optimal for membrane extraction, and this appears to be independent of the protein size, shape or expression system. A subset of polymers were taken forward for purification, functional and stability tests. Following a one-step affinity purification SMA 2000 was found to be the best choice for yield, purity and function. However the other polymers offer subtle differences in size and sensitivity to divalent cations that may be useful for a variety of downstream applications.