17 resultados para Platinum single crystal

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The introduction of single crystal casting techniques has led to the development of existing nickel-base superalloys to produce materials with optimum mechanical properties in the single crystal condition. As single crystals are known to be anisotropic, a study is needed to determine the general mechanical properties of these materials, and determine the effects of crystal orientation upon them. A study has been carried out to identify the effect of orientation and temperature on the creep and fatigue properties of a development single crystal superalloy, SRR 99. Creep testing and crystal rotation experiments have been made on SRR 99 and an earlier development alloy, SRR 9. Fatigue experiments at elevated temperatures have been carried out on both notched and un-notched specimens of alloy SRR 99. To aid in this analysis, several analytical techniques have been employed including Laue x-ray orientation analysis, measurement of strain by photographic methods and microstructural examination. Crystal rotation experiments have indicated that shear of 1 precipitates by lbrace111rbrace< 112> slip systems is operative during primary creep deformation at temperatures of 750oC and 850oC. The effect of orientation variation obtained by standard casting practices was not found to be significant. Creep rupture was found to be associated with multiple crack initiation from micropores. Fatigue crack initiation in un-notched specimens was found to be related to microporosity and microstructural defects. Failure was predominantly by crystallographic crack growth on lbrace111rbrace planes. The use of linear elastic fracture mechanics to describe fatigue crack propagation in alloy SRR 99 was found to be acceptable at temperatures up to 850oC. Variation of temperature, frequency and crystal orientation was found to have only moderate effect upon crack propagation rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A depressed cladding waveguide with record low loss of 0.12 dB/cm is inscribed in YAG:Nd(0.3at.%) crystal by femtosecond laser pulses with an elliptical beam waist. The waveguide is formed by a set of parallel tracks which constitute the depressed cladding. It is a key element for compact and efficient CW waveguide laser operating at 1064 nm and pumped by a multimode laser diode. Special attention is paid to mechanical stress resulting from the inscription process. Numerical calculation of mode distribution and propagation loss with the elasto-optical effect taken into account leads to the conclusion that the depressed cladding is a dominating factor in waveguide mode formation, while the mechanical stress only slightly distorts waveguide modes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A depressed cladding waveguide with record low loss of 0.12 dB/cm is inscribed in YAG:Nd(0.3at.%). It is shown that depressed cladding is a dominating factor in waveguide formation, and mechanical stress has a minor contribution. © 2012 OSA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The isothermal fatigue behavior of a high-activity aluminide-coated single-crystal superalloy was studied in air at test temperatures of 600 °C, 800 °C, and 1000 °C. Tests were performed using cylindrical specimens under strain control at ∼0.25 Hz; total strain ranges from 0.5 to 1.6 pet were investigated. At 600 °C, crack initiation occurred at brittle coating cracks, which led to a significant reduction in fatigue life compared to the uncoated alloy. Fatigue cracks grew from the brittle coating cracks initially in a stage II manner with a subsequent transition to crystallographic stage I fatigue. At 800 °C and 1000 °C, the coating failed quickly by a fatigue process due to the drastic reduction in strength above 750 °C, the ductile-brittle transition temperature. These cracks were arrested or slowed by oxidation at the coating-substrate interface and only led to a detriment in life relative to the uncoated material for total strain ranges of 1.2 pet and above 800 °C. The presence of the coating was beneficial at 800 °C for total strain rangesless than 1.2 pet. No effect of the coating was observed at 1000 °C. Crack growth in the substrate at 800 °C was similar to 600 °C; at 1000 °C, greater plasticity and oxidationrwere observed and cracks grew exclusively in a stage II manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of brittle coating precracking on the fatigue behavior of a high-activity aluminide-coated single-crystal nickel-base superalloy has been studied using hollow cylindrical specimens at test temperatures of 600 °C, 800 °C, and 1000 °C. Three types of precrack were studied: narrow precracks formed at room temperature, wide precracks formed at room temperature, and narrow precracks formed at elevated temperature. The effect of precracking on fatigue life at 600 °C was found to depend strongly on the type of precrack. No failure was observed for specimens with narrow room-temperature precracks because of crack arrest via an oxidation-induced crack closure mechanism, while the behavior of wide precracks and precracks formed at elevated temperature mirrored the non-precracked behavior. Crack retardation also occurred for narrow room-temperature precracks tested at 800 °C - in this case, fatigue cracks leading to failure initiated in a layer of recrystallized grains on the inside surface of the specimen. A significant reduction in fatigue life at 800 °C relative to non-precracked specimens was observed for wide precracks and elevated temperature precracks. The presence of precracks bypassed the initiation and growth of coating fatigue cracks necessary for failure in non-precracked material. No effect of precracking was observed at 1000 °C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An investigation, employing edge-on transmission electron microscopy, of the microstructure of aluminide diffusion coatings on a single crystal y' strengthened nickel base super alloy is reported. An examination has been made of the effect of postcoating exposure at 1100°C on the stability of the coating matrix, a B2 type phase, nominally NiAl. Precipitation in the coating is considered with respect to both decomposition of the B2 matrix to other Ni-Al (plus titanium) phases and the formation of chromium bearing precipitates. A comparison is drawn with behaviour at lower temperatures (850-950°C). © 1995 The Institute of Materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aluminide diffusion coatings are frequently employed to enhance the oxidation resistance of nickel base superalloys. However, there is a concern that the presence of an aluminide coating could influence the properties of the coated superalloy, especially in respect of fatigue behaviour. To understand the nature of the effects of surface coatings on the fatigue properties of superalloys, an understanding of microstructural development within both the coating and the coating/substrate interfacial zone during high temperature fatigue testing is necessary. This paper is concerned with microstructural changes in aluminide diffusion coatings on single crystal γ′ strengthened superalloy substrates during the course of high temperature fatigue testing. The 'edge on' transmission electron microscopy technique is employed to study cross-sections of two stage (aluminization plus diffusion treatment) coated superalloy samples. The paper examines the degradation of the coating produced by phase transformations induced by loss of aluminum from the coating and/or aging of the coating. Aluminum removal both by interdiffusion with the substrate and by oxidation of the coating surface is considered. Microstructural development in the portion of the substrate influenced by interdiffusion with the coating is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurement of the coating fracture strain of an aluminide coating on a single crystal nickel base superalloy has been performed both in three-point bending and using variable wall thickness testpieces. As-aged specimens, 28 to 33 μm in thickness, were tested at room temperature, 600, 700 and 750 °C; specimens pre-exposed for 140 h at 850 and 1100 °C in air and vacuum were tested at room temperature. Fracture strains varied from 0.52 to 0.70% for as-aged specimens tested at temperatures up to 700 °C and specimens exposed at 850 °C and tested at room temperature. The crack path for these conditions was intergranular or transgranular in the main coating, along carbide-matrix interfaces in the coating transition zone, and at an angle of 30-45° to the original crack path in the substrate. The as-aged coating tested at 750 °C was ductile; a ductile-brittle transition occurs between 700 and 750 °C for the strain rate used (1 × 10-5 s-1). Following 1100 °C pre-exposure, specimens were ductile at room temperature with fractures strains of several percent. In this condition the crack morphology changed to one of subsurface nucleation in β grains and at β-γ′ interfaces. © 1993.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hierarchical nanowires (HNWs) exhibit unique properties and have wide applications, while often suffering from imperfect structure. Herein, we report a facile strategy toward ultrathin CdS HNWs with monocrystal structure, where a continuous-wave (CW) Nd:YAG laser is employed to irradiate an oleic acid (OA) solution containing precursors and a light absorber. The high heating rate and large temperature gradient generated by the CW laser lead to the rapid formation of tiny zinc-blende CdS nanocrystals which then line up into nanowires with the help of OA molecules. Next, the nanowires experience a phase transformation from zinc-blende to wurtzite structure, and the transformation-induced stress creates terraces on their surface, which promotes the growth of side branches and eventually results in monocrystal HNWs with an ultrathin diameter of 24 nm. The one-step synthesis of HNWs is conducted in air and completes in just 40 s, thus being very simple and rapid. The prepared CdS HNWs display photocatalytic performance superior to their nanoparticle counterparts, thus showing promise for catalytic applications in the future.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Monoclinic RbPb2Cl5:Dy single crystal was tested for femtosecond laser writing at wavelength of 800nm. Dependence of permanent refractive index change upon input pulse energy was investigated. Non-linear coefficients of multiphoton absorption and self-focusing were measured. Kerr non-linear coefficient was found to be as high as 4.0*10-6 cm2/GW.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The crystal structure and magnetic properties of a penta-coordinate iron(III) complex of pyridoxal-4-methylthiosemicarbazone, [Fe(Hmthpy)Cl](CHCHSO), are reported. The synthesised ligand and the metal complex were characterised by spectroscopic methods (H NMR, IR, and mass spectroscopy), elemental analysis, and single crystal X-ray diffraction. The complex crystallises as dark brown microcrystals. The crystal data determined at 100(1) K revealed a triclinic system, space group P over(1, ¯) (Z = 2). The ONSCl geometry around the iron(III) atom is intermediate between trigonal bipyramidal and square pyramidal (t = 0.40). The temperature dependence of the magnetic susceptibility (5-300 K) is consistent with a high spin Fe(III) ion (S = 5/2) exhibiting zero-field splitting. Interpretation of these data yielded: D = 0.34(1) cm and g = 2.078(3). © 2007 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Five manganese complexes in an N 4O 2 donor environment have been prepared. Four of the compounds involve aroyl hydrazone as ligands and manganese is in a +2 oxidation state. The fifth compound was prepared using N,Nprime-o-phenylenebis(salicylideneimine) and imidazole as ligands where manganese is present in +3 oxidation state. X-ray crystal structure of one Mn +2 compound and the Mn +3 compound was determined. The relative stabilities of the Mn +2 and Mn +3 oxidation states were analyzed using the structural data and MO calculations. Manganese(II) complexes of four aroyl hydrazone ligands were prepared and characterized by different physicochemical techniques. The complexes are of the type Mn(L) 2, where L stands for the deprotonated hydrazone ligand. One of the compounds, Mn(pybzhz) 2, was also characterized by single crystal structure determination. In all these complexes, the Mn(II) is in an N 4O 2 donor environment and the Mn(II) center cannot be oxidized either chemically or electrochemically. However, when another ligand Ophsal is used to give the compound [Mn(Ophsal)(imzH) 2]ClO 4, which was also characterized by X-ray crystal structure determination, manganese can easily avail the +3 oxidation state. The relative stabilities of the +2 and +3 oxidation states of manganese were analyzed and it was concluded that the extent of distortion from the perfect octahedral geometry is the main controlling factor in these cases. © 2004 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The precipitation of chromium-containing phases, in both the B2 type β-phase coating matrix (nominally NiAl) and the substrate of high-activity-pack-aluminized single crystals of a nickel-base superalloy, is considered in this paper. An ‘edge-on’ transmission electron microscopy (TEM) technique is employed to examine the precipitation of M23X6, σ, α-Cr and other phases after coating and diffusion treatment and subsequent post-coating treatment at 850 and 950 °C. Initial precipitation is dominated by the formation of M23X6 in both the coating and substrate, however, in the case of single-crystal substrates the formation of this carbon-rich phase is not sustained. M23X6 precipitation is superceded by the formation of coherent precipitates of the α-Cr phase which effectively retains the basis but removes the superlattice of the β-matrix. Extensive precipitation of α-Cr has the effect of changing the balance of chromium to molybdenum in solution in the β-phase and further precipitation is dominated by Σ-phase intermetallics and other Cr-Mo-containing phases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The genesis of a catalytically active model Pt/Al2O3/NiAl{110} oxidation catalyst is described. An ultrathin, crystalline γ-Al2O3 film was prepared via direct oxidation of a NiAl{110} single-crystal substrate. The room-temperature deposition of Pt clusters over the γ-Al2O3 film was characterised by LEED, AES and CO titration and follows a Stranski–Krastanov growth mode. Surface sulfation was attempted via SO2/O2 adsorption and thermal processing over bare and Pt promoted Al2O3/NiAl{110}. Platinum greatly enhances the saturation SOx coverage over that of bare alumina. Over clean Pt/γ-Al2O3 surfaces some adsorbed propene desorbs molecularly [similar]250 K while the remainder decomposes liberating hydrogen. Coadsorbed oxygen or sulfate promote propene combustion, with adsorbed sulfoxy species the most efficient oxidant. The chemistry of these alumina-supported Pt clusters shows a general evolution from small polycrystalline clusters to larger clusters with properties akin to low-index, Pt single-crystal surfaces.