14 resultados para Plating.
em Aston University Research Archive
Resumo:
The turbocharging of diesel engines has led to increase in temperature, load and corrosive attack of plain bearings. To meet these requirements, overlay plated aluminium alloys are now preferred. Currently, lead-tin alloys are deposited using a zincate layer and nickel strike, as intermediate stages in the process. The nickel has undesirable seizure characteristics and the zincate can given rise to corrosion problems. Consequently, brush plating allows the possible elimination of these stages and a decrease in process together with greater automation. The effect of mode application, on the formation of zincate films, using film growth weight measurements, potential-time studies, peel adhesion testing and Scanning Electron Microscopy was studied, for both SIC and AS15 aluminium alloys. The direct plating of aluminium was also successfully achieved. The results obtained indicate that generally, although lower adhesion resulted when a brush technique was used, satisfactory adhesion for fatigue testing was achieved. Both lead-tin and tin-cobalt overlays were examined and a study of the parameters governing brush plating were carried out using various electrolytes. An experimentally developed small scale rig, was used to produce overlay plated bearings that were fatigue tested until failure. The bearings were then examined and an analysis of the failure mechanisms undertaken. The results indicated that both alloy systems are of the regular codeposition type. Tin-cobalt overlays were superior to conventional lead-tin overlays and remained in good condition, although the lining (substrate) failed. Brush plated lead-tin was unsatisfactory. Sufficient understanding has now been gained, to enable a larger scale automated plant to be produced. This will allow a further study of the technique to be carried out, on equipment that more closely resembles that of a full scale production process.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
The development of cobalt molybdenum and cobalt tungsten brush plating electrolytes is described. Their optimum compositions and operating conditions for commercial applications have been determined. The effects of composition, pH, applied voltage, stylus speed and pressure upon deposit composition and efficiency have been investigated. Transmission and Scanning Electron Microscopy have been employed to study the cobalt alloy deposits produced. Evaluation of the wear resistant properties of the cobalt alloys developed in this work was carried out in the laboratory using a pin and disc technique and a simulated hot forging test, and by industrial trials involving the "on site" plating of hot forging dies and cold pressing tools. It was concluded that the electrolytes developed in tl1is work enabled cobalt alloys containing 6% Mo or 8% W to be deposited at 17-20V. Brush plated cobalt deposits possessed a mixed CPU and FCC crystallographic structure at room temperature. The application of 13µm of either of the cobalt alloys resulted in improved wear performance in both pin and disc and simulated hot forging tests. The results of the industrial trials indicated that by the use of these alloys, the life of hot forging dies may be increased by 20-100%. A commercial forging organisation is using electrolytes developed in this work to coat dies prior to forging nimonic alloys. Reductions in forging temperature and improved forging qualities have been reported. Cold pressing tools coated with the alloys showed a reduced tendency to "pick-up" and scoring of the pressed panels. Reports of a reduced need for lubrication of panels before pressing have also been received.
Resumo:
Under ideal conditions ion plating produces finely grained dense coatings with excellent adhesion. The ion bombardment induced damage initiates a large number of small nuclei. Simultaneous coating and sputtering stimulates high rates of diffusion and forms an interfacial region of graded composition responsible for good adhesion. To obtain such coatings on components far industrial applications, the design and construction Of an ion plater with a 24" (O.6rn) diameter chamber were investigated and modifications of the electron beam gun were proposed. A 12" (O.3m) diameter ion plater was designed and constructed. The equipment was used to develop surfaces for solar energy applications. The conditions to give extended surfaces by sputter etching were studied. Austenitic stainless steel was sputter etched at 20 and 30 mTorr working pressure and at 3, 4 and 5 kV. Uniform etching was achieved by redesigning the specimen holder to give a uniform electrostatic field over the surfaces of the specimens. Surface protrusions were observed after sputter etching. They were caused by the sputter process and were independent of grain boundaries, surface contaminants and inclusions. The sputtering rate of stainless steel was highly dependent on the background pressure which should be kept below 10-5 Torr. Sputter etching improved the performance of stainless steel used as a solar selective surface. A twofold improvement was achieved on sputter etching bright annealed stainless steel. However, there was only slight improvement after sputter etching stainless steel which had been mechanically polished to a mirror finish. Cooling curves Were used to measure the thermal emittance of specimens.The deposition rate of copper was measured at different levels of power input and was found to be a maximum at 9.5 kW. The diameter of the copper feed rod was found to be critical for the maintenance of a uniform evaporation rate.
Resumo:
Baths containing sulphuric acid as catalyst and others with selected secondary catalysts (methane sulphonic acid - MSA, SeO2, a KBrO3/KIO3 mixture, indium, uranium and commercial high speed catalysts (HEEF-25 and HEEF-405)) were studied. The secondary catalysts influenced CCE, brightness and cracking. Chromium deposition mechanisms were studied in Part II using potentiostatic and potentiodynamic electroanalytical techniques under stationary and hydrodynamic conditions. Sulphuric acid as a primary catalyst and MSA, HEEF-25, HEEF-405 and sulphosalycilic acid as co-catalysts were explored for different rotation, speeds and scan rates. Maximum current was resolved into diffusion and kinetically limited components, and a contribution towards understanding the electrochemical mechanism is proposed. Reaction kinetics were further studied for H2SO4, MSA and methane disulphonic acid catalysed systems and their influence on reaction mechanisms elaborated. Charge transfer coefficient and electrochemical reaction rate orders for the first stage of the electrodeposition process were determined. A contribution was made toward understanding of H2SO4 and MSA influence on the evolution rate of hydrogen. Anodic dissolution of chromium in the chromic acid solution was studied with a number of techniques. An electrochemical dissolution mechanism is proposed, based on the results of rotating gold ring disc experiments and scanning electron microscopy. Finally, significant increases in chromium electrodeposition rates under non-stationary conditions (PRC mode) were studied and a deposition mechanisms is elaborated based on experimental data and theoretical considerations.
Resumo:
The object of this work was to further develop the idea introduced by Muaddi et al (1981) which enables some of the disadvantages of earlier destructive adhesion test methods to be overcome. The test is non-destructive in nature but it does need to be calibrated against a destructive method. Adhesion is determined by measuring the effect of plating on internal friction. This is achieved by determining the damping of vibrations of a resonating specimen before and after plating. The level of adhesion was considered by the above authors to influence the degree of damping. In the major portion of the research work the electrodeposited metal was Watt's nickel, which is ductile in nature and is therefore suitable for peel adhesion testing. The base metals chosen were aluminium alloys S1C and HE9 as it is relatively easy to produce varying levels of adhesion between the substrate and electrodeposited coating by choosing the appropriate process sequence. S1C alloy is the commercially pure aluminium and was used to produce good adhesion. HE9 aluminium alloy is a more difficult to plate alloy and was chosen to produce poorer adhesion. The "Modal Testing" method used for studying vibrations was investigated as a possible means of evaluating adhesion but was not successful and so research was concentrated on the "Q" meter. The method based on the use of a "Q" meter involves the principle of exciting vibrations in a sample, interrupting the driving signal and counting the number of oscillations of the freely decaying vibrations between two known preselected amplitudes of oscillations. It was not possible to reconstruct a working instrument using Muaddi's thesis (1982) as it had either a serious error or the information was incomplete. Hence a modified "Q" meter had to be designed and constructed but it was then difficult to resonate non-magnetic materials, such as aluminium, therefore, a comparison before and after plating could not be made. A new "Q" meter was then developed based on an Impulse Technique. A regulated miniature hammer was used to excite the test piece at the fundamental mode instead of an electronic hammer and test pieces were supported at the two predetermined nodal points using nylon threads. This instrument developed was not very successful at detecting changes due to good and poor pretreatments given before plating, however, it was more sensitive to changes at the surface such as room temperature oxidation. Statistical analysis of test results from untreated aluminium alloys show that the instrument is not always consistent, the variation was even bigger when readings were taken on different days. Although aluminium is said to form protective oxides at room temperature there was evidence that the aluminium surface changes continuously due to film formation, growth and breakdown. Nickel plated and zinc alloy immersion coated samples also showed variation in Q with time. In order to prove that the variations in Q were mainly due to surface oxidation, aluminium samples were lacquered and anodised Such treatments enveloped the active surfaces reacting with the environment and the Q variation with time was almost eliminated especially after hard anodising. This instrument detected major differences between different untreated aluminium substrates.Also Q values decreased progressively as coating thicknesses were increased. This instrument was also able to detect changes in Q due to heat-treatment of aluminium alloys.
Resumo:
BACKGROUND: There is limited research concerning how small companies in particular, respond to health and safety messages. AIMS: To understand individuals' knowledge and beliefs about chemical risks and to compare these with those of experts. METHODS: The use of chromic acid in particular, and also other chemicals associated with chrome plating were studied. All chromium plating firms were based in the West Midlands. The methodology involved initial face to face interviews (n = 21) with chromium platers, structured questionnaires (n = 84) to test the prevalence of beliefs identified in the interviews, an expert questionnaire, and a workshop to discuss findings. The responses of platers were compared with those of occupational health and safety experts. RESULTS: Although chromium platers appeared to understand the short term adverse effects of the chemicals to which they are exposed, their understanding of long term, or chronic effects appeared to be incomplete. They had good knowledge of acute effects based primarily on experience. Platers were aware of the hazardous nature of the chemicals with which they work, but did not draw distinction between the terms "hazards" and "risks". They had difficulties articulating the effects of the chemicals and how exposure might occur; although it is inappropriate to equate this with lack of knowledge. A significant minority of platers displayed deficiencies in understanding key technical terms used in Safety Data Sheets. CONCLUSIONS: This study provides a method which can be used to gain some understanding of workers' knowledge and beliefs about risks that they are exposed to in the workplace. The study also identifies gaps between the platers' knowledge and beliefs and those of experts. New risk information needs to be designed which addresses the information needs of platers using language that they understand.
Resumo:
In industry the colour of a gold alloy electrodeposit is checked by visual comparison with standard panels. The aims of the present work have been to access the application of spectrophotmetric techniques to the measurement of the colour of gold alloy electrodeposits and to examine the factors that influence the colour of thin deposits. The minimum thickness of deposit required to produce its final colour and completely hide the underlying substrate was measured and found to depend on the nature of the substrate, the plating solution and the operating conditions. Bright and matt electrodeposits were studied. The influence of alloying gold by adding copper, silver and indium to the plating solution were investigated. CIE chromaticity coordinates were calculated from spectrophotometric data using a computer programme written for the purpose. The addition of silver to a simple gold bath caused the colour of the deposit to change from yellow through green to near white in a smooth progression as the amount of silver in solid solution steadily increased. The colour of deposits formed when additions of copper were made was complicated by the formation of intermediate phases. À colour in the blue region of the spectrum was obtained in a few experiments investigating the influence of indium additions to the gold bath.
Resumo:
With the increase use of de-icing salts on roads for safety, the need for improved corrosion resistance of the traditional galvanized automobile bodies has never been greater. In the present work, Zn alloy coatings (Zn-Ni and Zn-Co) were studied as an alternative to pure Zn coatings. The production of these deposits involved formulation of various acidic (pH of about 5.5) chloride based solutions. These showed anomalous deposition, that is, alloys were deposited much more easily than expected from the noble behaviour of Ni and Co metals. Coating compositions ranging from 0 to about 37% Ni and 20% Co were obtained. The chemical composition of the coatings depended very much on the electrolytes nature and operating conditions. The Ni content of deposits increased with increase in Ni bath concentration, temperature, pH and solution agitation but decreased considerably with increase in current density. The throwing power of the Zn-Ni solution deteriorated as Ni metal bath concentration increased. The Co content of deposits also increased with increase in Co bath concentration and temperature, and decreased with increase in current density. However, the addition of commercial organic additives to Zn-Co plating solutions suppressed considerably the amount of Co in the coatings. The Co content of deposits plated from Zincrolyte solution was found to be more sensitive to variation in current density than in the case of deposits plated from the alkaline Canning solution. The chromating procedures were carried out using laboratory formulated solution and commercially available ones. The deposit surface state was of great significance in influencing the formulation of conversion coatings. Bright and smooth deposits acquired an iridescent colour when treated with the laboratory formulated solution. However, the dull deposits acquired a brownish appearance. The correlation between the electrochemical test results and the neutral salt spray in marine environment was good. Non-chromated Zn-Ni coatings containing about 11-14% Ni increased in corrosion resistance compared to pure Zn. Non-chromated Zn-Co deposits of composition 4-8% were required to show a significant improvement in corrosion resistance Corrosion resistance was improved considerably by conversion coating. However, the type of conversion coating was very important. Samples treated in a laboratory solution performed badly compared to those treated in commercial solutions. Zn alloy coatings were superior to pure Zn, the Schloetter sample (13.8% Ni) had the lowest corrosion rate, followed by the Canning sample (1.0% Co) and then Zincrolyte (0.3% Co).Neither the chromium content of the conversion films nor the chromium state was found to have an effect on corrosion performance of the coatings.
Resumo:
Mechanical seals are used extensively to seal machinery such as pumps, mixers and agitators in the oil, petrochemical and chemical industries. The performance of such machinery is critically dependent on these devices. Seal failures may result in the escape of dangerous chemicals, possibly causing injury or loss of life. Seal performance is limited by the choice of face materials available. These range from cast iron and stellited stainless steel to cemented and silicon carbides. The main factors that affect seal performance are the wear and corrosion of seal faces. This research investigated the feasibility of applying surface coating/treatments to seal materials, in order to provide improved seal performance. Various surface coating/treatment methods were considered; these included electroless nickel plating, ion plating, plasma nitriding, thermal spraying and high temperature diffusion processes. The best wear resistance, as evaluated by the Pin-on-Disc wear test method, was conferred by the sprayed tungsten carbide/nickel/tungsten-chromium carbide deposit, produced by the high energy plasma spraying (Jet-Kote) process. In general, no correlation was found between hardness and wear resistance or surface finish and friction. This is due primarily to the complexity of the wear and frictional oxidation, plastic deformation, ploughing, fracture and delamination. Corrosion resistance was evaluated by Tafel extrapolation, linear polarisation and anodic potentiodynamic polarisation techniques. The best corrosion performance was exhibited by an electroless nickel/titanium nitride duplex coating due to the passivity of the titanium nitride layer in the acidified salt solution. The surface coating/treatments were ranked using a systematic method, which also considered other properties such as adhesion, internal stress and resistance to thermal cracking. The sealing behaviour of surface coated/treated seals was investigated on an industrial seal testing rig. The best sealing performances were exhibited by the Jet-Kote and electroless nickel silicon carbide composite coated seals. The failure of the electroless nickel and electroless nickel/titanium nitride duplex coated seals was due to inadequate adhesion of the deposits to the substrate. Abrasion of the seal faces was the principal wear mechanism. For operation in an environment similar to the experimental system employed (acidified salt solution) the Jet-Kote deposit appears to be the best compromise.
Resumo:
This research was concerned with the effects of pulsed current on the electrodeposition of chromium and copper. In the case of the latter metal, a novel application has been studied and a theory proposed for the ability to improve throwing power by the joint use of organic additives and pulsed reverse current. During the course of the research, several improvements were made to the pulse plating unit.Chromium. A study was made of the effect of square wave pulsed current on various physical properties of deposits from three hard chromium plating electrolytes. The effect of varying frequency at a duty cycle of 50% on the mean bulk internal stress, visual appearance, hardness, crack characteristics and surface topography of the electrodeposits was determined. X-ray diffraction techniques were used to study the phases present in the deposits. The effect of varying frequency on the cathodic efficiencies of the electrolytes was also determined. It was found that pulsed current reduced the internal stress of deposits from the sulphate catalysed electrolyte. It also reduced or eliminated cracking of deposits and reduced deposit brightness. Under certain conditions, pulsed current was found to induce the co-deposition of hydrides of chromium. Deposit hardness was found to be reduced by the use of pulsed current. Cathodic efficiencies of the high efficiency electrolytes were reduced by use of pulsed current although this effect was minimised at high frequencies. The sulphate catalysed electrolyte showed an increase in efficiency over the frequency range where hydrides were co-deposited.Copper. The polarisation behaviour of acid copper solutions containing polyethers, sulphopropyl sulphides and chloride ions was studied using both direct and pulse reverse current. The effect of these additives on the rest potentials of copper deposits immersed in the electrolyte was also studied. Hole Throwing Power on printed circuit boards was determined using a specially designed test cell. The effect of pulsed reverse current on the hole throwing power of commercially produced printed circuit boards was also studied. Polyethers were found to have an inhibiting effect on the deposition of copper whereas the sulphopropyl sulphides produced a stimulating (i.e. depolarising) effect. Studies of rest potentials made when both additives were present indicated that the sulphopropyl sulphide was preferentially adsorbed. The use of pulsed reverse current in solutions containing both polyether and sulphopropyl sulphide was found to cause desorption of the sulphopropyl sulphide at the cathode surface. Thus, at higher current densities, the inhibiting effect of the polyether produced an increase in the cathodic polarisation potential. At lower current densities, the depolarisation effect of the sulphopropyl sulphide could still occur. On printed circuit boards, this effect was found to produce an increase in the `hole throwing power' due to depolarisation of the holes relative to the surface of the boards. Typically, using direct current, hole/surface thickness ratios of 40% were obtained when plating 0.6 mm holes in a 3.2 mm thick board at a current density of 3 A/dm2 whereas using pulsed reverse current, ratios of 80% could be obtained at an equivalent rate of deposition. This was observed both in laboratory tests and on commercially plated boards.
Resumo:
The deposition efficiencies of a number of electroless nickel and cobalt plating solutions were studied and in the case of nickel compared with a commercial plating solution Nifoss 80. At the optimum plating conditions (92ºC and pH 4.5) Nifoss 80 produced nickel layers most efficiently, the alkaline cobalt solution operated most efficiently at 90ºC and pH 9. The methods of producing compostte layers containing 2-3 µm carbide particles and chromium powder is described. Nickel and cobalt layers containing approximately 27% carbide particles, or 40% (Ni) and 30% (Co) chromium particles by volume were obtained. This value is independent of the particle concentration in the plating solution within the range (20~200 g/l). Hardness of the nickel. as deposited was 515 Hv, this was increased to a maximum of 1155 Hv by heat treatment at 200ºC for 5 hours in vacuum. Incorporation. of .chromium carbide particles resulted in a maximum hardness of 1225 Hv after heating at 500ºC for 5 hours in vacuum and chromium particles resulted in a maximum hardness of 16S0 Hv after heat treatment at 400ºC for 2 hours in vacuum. Similarly the hardness of cobalt as deposited was 600 Hv, this was increased to a maximum of 1300 Hv after heat treatment at 400ºC for 1 hour. Incorporation of chromium carbide particles resulted jn a maximum hardness of 1405 Hv after heating at 400ºC for 5 hours in vacuum and chromium particles resulted in a maximum hardness of 1440 Hv after. heat treating for 2 hours at 400ºC in vacuum. The structure of the deposits was studied by optical and scanning electron microscopy. The wear rate and coefficient of friction was determined by a pin and disc method. Wear rate and coefficient of friction decreased with increase in hardness. The wear resistance of the materials was also determined using a simulated forging test. Dies made of standard die steel were coated and the wear rates of the layers as deposited and after heat treatment were compared with those of uncoated tools. The wear resistance generally increased with hardness, it was 50-75% more than the uncoated die steel. Acetic acid salt spray test and outdoor exposure for six months was used to study the corrosion behaviour of the deposits and potentiodynamic curves plotted to find their corrosion potential. Nickel deposit exhibited less staining than carbide composite deposits and nickel-chromium deposits had the most noble corrosion potential.
Resumo:
The effects of ultrasonic agitation on deposition from two iron group alloy plating solutions, nickel-cobalt and bright nickel-iron, have been studied. Comparison has been made with deposits plated from the same solutions using controlled air agitation. The ultrasonic equipment employed had a fixed frequency of 13 KHz but the power output from each transducer was variable up to a maximum of 350 watts. The effects of air and ultrasonic agitation on hardness, ductility, tensile strength, composition, structure, surface topography, limiting current density, cathode current efficiency and macro-throwing power were determined. Transmission and scanning electron microscopy, electron-probe microanalysis and atomic absorption spectrophotometry have been employed to study the nickel alloy deposits produced. The results obtained show that the use of Ultrasonics increased significantly the hardness of both alloy deposits and altered their composition by decreasing the cobalt and iron contents from nickel-cobalt and nickeliron solutions respectively. The ductility of coatings improved but the tensile strength did not change very much. Ultrasonic agitation gave larger grained deposits than air and they seemed to have a lower stress. Dull cobalt-nickel deposits had a similar pyramidal surface topography regardless of the type of agitation but the bright appearance of the nickel-iron was destroyed by ultrasonic agitation; an unusual ribbed pattern was produced. The use of ultrasonic agitation permitted approximately a twofold increase in the plating current density at which sound deposits could be achieved but there was only a slight increase in cathode current efficiency. Macro-throwing power of the solutions was increased slightly by the use of ultrasonic agitation. ultrasonic agitation is an expensive means of agitating plating Solutions and would be worthwhile only if significant improvements in properties could be achieved. The simultaneous improvement in hardness and ductility is a novel feature that should have useful engineering applications.
Resumo:
Established RlNm5F and lN111 R1 and newly available HlT-T15 and UMR 407/3 B-cell lines have been successfully maintained in vitro. With the exclusion of UMR 407/3 cells, all lines were continuously propagable. Doubling times and plating efficiencies for HlT-T15, RlNm5F, lN111 R1 and UMR 407/3 cells were 20 hours and 85%, 31 hours and 76%, 24 hours and 80% and 38 hours and 94% respectively. All the cell lines were anchorage dependent, but only UMR 407/3 cells grew to confluence. Only HlT-T15 and UMR 407/3 cells produced a true insulin response to glucose but glucose markedly increased the rate of D-[U14C]glucose oxidation by all the cell lines. Glucose induced insulin release from HlT-T15 cells was biphasic with an exaggerated first phase. Insulin release from HlT-T15, RlNm5F and IN111 R1 cells was stimulated by amino acids and sulphonylureas. Glucagon stimulated insulin release from HlT-T15 and RlNm5F cells while somatostatin and pancreatic polypeptide inhibited release. These observations suggest that net insulin release from the whole islet may be the result of significant paracrine interaction. HlT-T15 and RlNm5F cell insulin release was stimulated by forskolin and inhibited by imidazole. Ca2+ channel blockade and calmodulin inhibition suppressed insulin release from HlT-T15, RlNm5F and IN111 R1 cells. In addition phorbol esters stimulated insulin release from RlNm5F cells. These data implicate cAMP, Ca2+ and protein kinase-C in the regulation of insulin release from cultured B-cells. Acetylcholine increased insulin release from HlT-T15 and RlNm5F cells. Inhibition of the response by atropine confirmed the involvement of muscarinic receptors. HlT-T15 cell insulin release was also inhibited by adrenaline. These observations suggest a possible role for the autonomic nervous system in the modulation of insulin release. Preliminary studies with a human insulinoma maintained in monolayer culture have demonstrated a limited life span of some seven weeks, a continuous low level of insulin release but no insulin response to glucose challenge.