7 resultados para Plataformas offshore
em Aston University Research Archive
Resumo:
Offshore oil and gas pipelines are vulnerable to environment as any leak and burst in pipelines cause oil/gas spill resulting in huge negative Impacts on marine lives. Breakdown maintenance of these pipelines is also cost-intensive and time-consuming resulting in huge tangible and intangible loss to the pipeline operators. Pipelines health monitoring and integrity analysis have been researched a lot for successful pipeline operations and risk-based maintenance model is one of the outcomes of those researches. This study develops a risk-based maintenance model using a combined multiple-criteria decision-making and weight method for offshore oil and gas pipelines in Thailand with the active participation of experienced executives. The model's effectiveness has been demonstrated through real life application on oil and gas pipelines in the Gulf of Thailand. Practical implications. Risk-based inspection and maintenance methodology is particularly important for oil pipelines system, as any failure in the system will not only affect productivity negatively but also has tremendous negative environmental impact. The proposed model helps the pipelines operators to analyze the health of pipelines dynamically, to select specific inspection and maintenance method for specific section in line with its probability and severity of failure.
Resumo:
Hydrocarbons are the most common form of energy used to date. The activities involving exploration and exploitation of large oil and gas fields are constantly in operation and have extended to such hostile environments as the North Sea. This enforces much greater demands on the materials which are used, and the need for enhancing the endurance of the existing ones which must continue parallel to the explorations. Due to their ease in fabrication, relatively high mechanical properties and low costs, steels are the most widely favoured material for the construction of offshore platforms. The most critical part of an offshore structure prone to failure are the welded nodal joints, particulary those which are used within the vicinity of the splash zones. This is an area of high complex stress concentrations, varying mechanical and metallurgical properties in addition to severe North Sea environmental conditions. The main are of this work has been concerned with the durability studies of this type of steel, based on the concept of the worst case analysis, consisting of combinations of welds of varying qualities, various degrees of stress concentrations and the environmental conditions of stress corrosion and hydrogen embrittlement. The experiments have been designed to reveal significance of defects as sites of crack initiation in the welded steels and the extent to which stress corrosion and hydrogen embrittlement will limit their durability. This has been done for various heat treatments and in some experiments deformation has been forced through the welded zone of the specimens to reveal the mechanical properties of the welds themselves to provide data for finite element simulations. A comparison of the results of these simulations with the actual deformation and fracture behaviour has been done to reveal the extent to which both mechanical and metallurgical factors control behaviour of the steels in the hostile environments of high stress, corrosion, and hydrogen embrittlement at their surface.
Resumo:
In this article, we review aspects relating to the attractiveness of India for information technology offshore – outsourcing. Our starting point is that, indeed, India will remain competitive in the short-medium term. However, more importantly, we move on to argue that country attractiveness is becoming a less important issue. We consider an alternative approach to analyze country attractive in which the client's strategic intent behind going offshore and the vendor's global dispersedness and its local knowledge define the attractiveness of the firm's offshoring strategy.
Resumo:
This chapter discusses network protection of high-voltage direct current (HVDC) transmission systems for large-scale offshore wind farms where the HVDC system utilizes voltage-source converters. The multi-terminal HVDC network topology and protection allocation and configuration are discussed with DC circuit breaker and protection relay configurations studied for different fault conditions. A detailed protection scheme is designed with a solution that does not require relay communication. Advanced understanding of protection system design and operation is necessary for reliable and safe operation of the meshed HVDC system under fault conditions. Meshed-HVDC systems are important as they will be used to interconnect large-scale offshore wind generation projects. Offshore wind generation is growing rapidly and offers a means of securing energy supply and addressing emissions targets whilst minimising community impacts. There are ambitious plans concerning such projects in Europe and in the Asia-Pacific region which will all require a reliable yet economic system to generate, collect, and transmit electrical power from renewable resources. Collective offshore wind farms are efficient and have potential as a significant low-carbon energy source. However, this requires a reliable collection and transmission system. Offshore wind power generation is a relatively new area and lacks systematic analysis of faults and associated operational experience to enhance further development. Appropriate fault protection schemes are required and this chapter highlights the process of developing and assessing such schemes. The chapter illustrates the basic meshed topology, identifies the need for distance evaluation, and appropriate cable models, then details the design and operation of the protection scheme with simulation results used to illustrate operation. © Springer Science+Business Media Singapore 2014.
Resumo:
The coordination of effort within and among different expert groups is a central feature of contemporary organizations. Within the existing literature, however, a dichotomy has emerged in our understanding of the role played by codification in coordinating expert groups. One strand of literature emphasizes codification as a process that supports coordination by enabling the storage and ready transfer of knowledge. In contrast, another strand highlights the persistent differences between expert groups that create boundaries to the transfer of knowledge, seeing coordination as dependent on the quality of the reciprocal interactions between groups and individuals. Our research helps to resolve such contested understandings of the coordinative role played by codification. By focusing on the offshore-outsourcing of knowledge-intensive services, we examine the role played by codification when expertise was coordinated between client staff and onsite and offshore vendor personnel in a large-scale outsourcing contract between TATA Consultancy Services (TCS) and ABN AMRO bank. A number of theoretical contributions flow from our analysis of the case study, helping to move our understanding beyond the dichotomized views of codification outlined above. First, our study adds to previous work where codification has been seen as a static concept by demonstrating the multiple, coexisting, and complementary roles that codification may play. We examine the dynamic nature of codification and show changes in the relative importance of these different roles in coordinating distributed expertise over time. Second, we reconceptualize the commonly accepted view of codification as focusing on the replication and diffusion of knowledge by developing the notion of the codification of the “knower” as complementary to the codification of knowledge. Unlike previous studies of expertise directories, codification of the knower does not involve representing expertise in terms of occupational skills or competences but enables the reciprocal interrelating of expertise required by more unstructured tasks.
Resumo:
High-power and high-voltage gain dc-dc converters are key to high-voltage direct current (HVDC) power transmission for offshore wind power. This paper presents an isolated ultra-high step-up dc-dc converter in matrix transformer configuration. A flyback-forward converter is adopted as the power cell and the secondary side matrix connection is introduced to increase the power level and to improve fault tolerance. Because of the modular structure of the converter, the stress on the switching devices is decreased and so is the transformer size. The proposed topology can be operated in column interleaved modes, row interleaved modes, and hybrid working modes in order to deal with the varying energy from the wind farm. Furthermore, fault-tolerant operation is also realized in several fault scenarios. A 400-W dc-dc converter with four cells is developed and experimentally tested to validate the proposed technique, which can be applied to high-power high-voltage dc power transmission.