84 resultados para Plastic Fibres
em Aston University Research Archive
Resumo:
The preparation and characterisation of novel biodegradable polymer fibres for application in tissue engineering and drug delivery are reported. Poly(e-caprolactone) (PCL) fibres were produced by wet spinning from solutions in acetone under low shear (gravity flow) conditions. The tensile strength and stiffness of as-spun fibres were highly dependent on the concentration of the spinning solution. Use of a 6% w/v solution resulted in fibres having strength and stiffness of 1.8 MPa and 0.01 GPa respectively, whereas these values increased to 9.9 MPa and 0.1 GPa when fibres were produced from 20% w/v solutions. Cold drawing to an extension of 500% resulted in further increases in fibre strength (up to 50 MPa) and stiffness (0.3 GPa). Hot drawing to 500% further increased the fibre strength (up to 81 MPa) and stiffness (0.5 GPa). The surface morphology of as-spun fibres was modified, to yield a directional grooved pattern by drying in contact with a mandrel having a machined topography characterised by a peak-peak separation of 91 mm and a peak height of 30 mm. Differential scanning calorimetery (DSC) analysis of as-spun fibres revealed the characteristic melting point of PCL at around 58°C and a % crystallinity of approximately 60%. The biocompatibility of as-spun fibres was assessed using cell culture. The number of attached 3T3 Swiss mouse fibroblasts, C2C12 mouse myoblasts and human umbilical vein endothelial cells (HUVECs) on as-spun, 500% cold drawn, and gelatin coated PCL fibres were observed. The results showed that the fibres promoted cell proliferation for 9 days in cell culture and was slightly lower than on tissue culture plastic. The morphology of all cell lines was assessed on the various PCL fibres using scanning electron microscopy. The cell function of HUVECs growing on the as-spun PCL fibres was evaluated. The ability HUVECs to induce an immune response when stimulated with lipopolysaccaride (LPS) and thereby to increase the amount of cell surface receptors was assessed by flow cytometry and reverse transcription-polymerase chain reaction (RT-PCR). The results showed that PCL fibres did not inhibit this function compared to TCP. As-spun PCL fibres were loaded with 1 % ovine albumin (OVA) powder, 1% OVA nanoparticles and 5% OVA nanoparticles by weight and the protein release was assessed in vitro. PCL fibres loaded with 1 % OVA powder released 70%, 1% OVA nanoparticle released 60% and the 5% OVA nanoparticle released 25% of their protein content over 28 days. These release figures did not alter when the fibres were subjected to lipase enzymatic degradation. The OVA released was examined for structural integrity by SDS-PAGE. This showed that the protein molecular weight was not altered after incorporation into the fibres. The bioactivity of progesterone was assessed following incorporation into PCL fibres. Results showed that the progesterone released had a pronounced effect on MCF-7 breast epithelial cells, inhibiting their proliferation. The PCL fibres display high fibre compliance, a potential for controlling the fibre surface architecture to promote contact guidance effects, favorable proliferation rate of fibroblasts, myoblasts and HUVECs and the ability to release pharmaceuticals. These properties recommended their use for 3-D scaffold production in soft tissue engineering and the fibres could also be exploited for controlled presentation and release of biopharmaceuticals such as growth factors.
Resumo:
This paper reports the first demonstration of a silica fibre Bragg grating (SOFBG) embedded in an FDM 3-D printed housing to yield a dual grating temperature-compensated strain sensor. We also report the first ever integration of polymer fibre Bragg grating (POFBG) within a 3-D printed sensing patch for strain or temperature sensing. The cyclic strain performance and temperature characteristics of both devices are examined and discussed. The strain sensitivities of the sensing patches were 0.40 and 0.95 pm/μϵ for SOFBG embedded in ABS, 0.38 pm/μμ for POFBG in PLA, and 0.15 pm/μμ for POFBG in ABS. The strain response was linear above a threshold and repeatable. The temperature sensitivity of the SOFBG sensing patch was found to be up to 169 pm/°C, which was up to 17 times higher than for an unembedded silica grating. Unstable temperature response POFBG embedded in PLA was reported, with temperature sensitivity values varying between 30 and 40 pm/°C.
Resumo:
A 1.2(height)×125(depth)×500(length) micro-slot was engraved along a fiber Bragg grating by chemically assisted femtosecond laser processing. By filling epoxy and UV-curing, waveguide with plastic-core and silica-cladding was created, presenting high thermal responding coefficient of 211pm/°C.
Resumo:
Nanoscale effects in miniature optical fibre-based devices are reviewed. Propagation of the fundamental mode in subwavelength diameter optical fibres and whispering gallery modes in fibres having the diameter much greater than the wavelength are considered. © 2014 IEEE.
Resumo:
Presentation of the progress made in modelling fibre agglomerate transport in the racetrack channel. Fibre agglomerates can be generated through the disruption of insulation materials during LOCA in NPPs. The fibres can make their way to the containment sump strainers and lead to their blockage. This blockage can lead to an increase in the pressure drop acting across the strainers, which can lead to cavitation behind the strainer and in the recirculation pumps. This will lead to a loss of ECC water reaching the reactor. A small proportion of the fibres may also reach the reactor vessel. Therefore reliable numerical models of the three-dimensional flow behaviour of the fibres must be developed. The racetrack channel offers the chance to validate such models. The presentation describes the techniques involved and the results obtained from transient simulations of the whole channel.
Resumo:
The phenomenon of low-PMD fibres is examined through numerical simulations. Instead of the coarse-step method we are using an algorithm developed through the Manakov-PMD equation. With the integration of the Manakov-PMD equation we have access to the fibre spin which relates to the orientation of the birefringence. The simulation results produced correspond to the behaviour of a low-PMD spun fibre. Furthermore we provide an analytical approximation compared to the numerical data. © 2005 Optical Society of America.
Resumo:
A new numerical model which incorporates Brillouin shift frequency variations arising from fibre inhomogeneities has been developed for stimulated Brillouin scattering in optical fibres. This enables simulations of backscattered and transmitted power as functions of input power based only on known physical and material parameters as well as the polarisation factor and the measured Brillouin gain linewidth for the fibre. Agreement between modelled and experimental power characteristics for a CW input is excellent.
Resumo:
We analytically and numerically analyze the occurrence of modulational instability in fibers with periodic changes in the group-velocity dispersion. For small variations, a set of resonances occurs in the gain spectrum. However, large dispersion variations eliminate these resonances and restrict the bandwidth of the fundamental gain spectrum. This research has been motivated by the adoption of dispersion management techniques in long-haul optical communications.
Resumo:
A 1.2(height)×125(depth)×500(length) micro-slot was engraved along a fiber Bragg grating by chemically assisted femtosecond laser processing. By filling epoxy and UV-curing, waveguide with plastic-core and silica-cladding was created, presenting high thermal responding coefficient of 211pm/°C.
Resumo:
This thesis presents the fabrication of fibre gratings in novel optical fibres for sensing applications. Long period gratings have been inscribed into photonic crystal fibre using the electric-arc technique. The resulting sensing characteristics were found to depend on the air-hole geometry of the particular fibre. This provides the potential of designing a fibre to have enhanced sensitivity to a particular measure and whilst removing unwanted cross sensitivities. Fibre Bragg gratings have been fabricated in a variety of polymer optical fibres, including microstructured polymer optical fibre, using a continuous wave helium cadmium laser. The thermal response of the gratings have been characterised and found to have enhanced sensitivity compared to fibre Bragg gratings in silica optical fibre. The increased sensitivity has been harnessed to achieve a grating based device in single mode step index polymer optical fibre by fabricating an electrically tunable fibre Bragg grating. This was accomplished by coating the grating region in a thin layer of copper, which upon application of a direct current, causes a temperature induced Bragg wavelength shift.
Resumo:
A numerical model of a long period grating in photonic crystal fibre fabricated by an electric arc is proposed that allows for the spectral characterisation of the grating. In the combination with the suggested model of the photonic crystal and the experimentally recorded grating growth it is used to find the index change induced by the electric arc.
Resumo:
In order to characterise long period gratings fabricated in endlessly single mode photonic crystal fibres with bulk cladding we perform eigenanalysis of guided modes supported by these fibres. Resonant coupling occurs only when the beating length equals the multiple grating periods. Experimentally obtained grating spectra and sensitivity are fully explained using modified phase matching condition.