3 resultados para Plant-pathogen relationships
em Aston University Research Archive
Resumo:
The first crystal structures of recombinant mammalian membrane proteins were solved in 2005 using protein that had been produced in yeast cells. One of these, the rabbit Ca2+-ATPase SERCA1a, was synthesized in Saccharomyces cerevisiae. All host systems have their specific advantages and disadvantages, but yeast has remained a consistently popular choice in the eukaryotic membrane protein field because it is quick, easy and cheap to culture, whilst being able to post-translationally process eukaryotic membrane proteins. Very recent structures of recombinant membrane proteins produced in S. cerevisiae include those of the Arabidopsis thaliana NRT1.1 nitrate transporter and the fungal plant pathogen lipid scramblase, TMEM16. This chapter provides an overview of the methodological approaches underpinning these successes.
Resumo:
The soil-plant-moisture subsystem is an important component of the hydrological cycle. Over the last 20 or so years a number of computer models of varying complexity have represented this subsystem with differing degrees of success. The aim of this present work has been to improve and extend an existing model. The new model is less site specific thus allowing for the simulation of a wide range of soil types and profiles. Several processes, not included in the original model, are simulated by the inclusion of new algorithms, including: macropore flow; hysteresis and plant growth. Changes have also been made to the infiltration, water uptake and water flow algorithms. Using field data from various sources, regression equations have been derived which relate parameters in the suction-conductivity-moisture content relationships to easily measured soil properties such as particle-size distribution data. Independent tests have been performed on laboratory data produced by Hedges (1989). The parameters found by regression for the suction relationships were then used in equations describing the infiltration and macropore processes. An extensive literature review produced a new model for calculating plant growth from actual transpiration, which was itself partly determined by the root densities and leaf area indices derived by the plant growth model. The new infiltration model uses intensity/duration curves to disaggregate daily rainfall inputs into hourly amounts. The final model has been calibrated and tested against field data, and its performance compared to that of the original model. Simulations have also been carried out to investigate the effects of various parameters on infiltration, macropore flow, actual transpiration and plant growth. Qualitatively comparisons have been made between these results and data given in the literature.
Resumo:
The term oxylipin is applied to the generation of oxygenated products of polyunsaturated fatty acids that can arise either through non-enzymatic or enzymatic processes generating a complex array of products, including alcohols, aldehydes, ketones, acids and hydrocarbon gases. The biosynthetic origin of these products has revealed an array of enzymes involved in their formation and more recently a radical pathway. These include lipoxygenases and α-dioxygenase that insert both oxygen atoms in to the acyl chain to initiate the pathways, to specialised P450 monooxygenases that are responsible for their downstream processing. This latter group include enzymes at the branch points such as allene oxide synthase, leading to jasmonate signalling, hydroperoxide lyase, responsible for generating pathogen/pest defensive volatiles and divinyl ether synthases and peroxygenases involved in the formation of antimicrobial compounds. The complexity of the products generated raises significant challenges for their rapid identification and quantification using metabolic screening methods. Here the current developments in oxylipin metabolism are reviewed together with the emerging technologies required to expand this important field of research that underpins advances in plant-pest/pathogen interactions.