3 resultados para Plant-bacteria interaction
em Aston University Research Archive
Resumo:
A CSSL- type modular FORTRAN package, called ACES, has been developed to assist in the simulation of the dynamic behaviour of chemical plant. ACES can be harnessed, for instance, to simulate the transients in startups or after a throughput change. ACES has benefited from two existing simulators. The structure was adapted from ICL SLAM and most plant models originate in DYFLO. The latter employs sequential modularisation which is not always applicable to chemical engineering problems. A novel device of twice- round execution enables ACES to achieve general simultaneous modularisation. During the FIRST ROUND, STATE-VARIABLES are retrieved from the integrator and local calculations performed. During the SECOND ROUND, fresh derivatives are estimated and stored for simultaneous integration. ACES further includes a version of DIFSUB, a variable-step integrator capable of handling stiff differential systems. ACES is highly formalised . It does not use pseudo steady- state approximations and excludes inconsistent and arbitrary features of DYFLO. Built- in debug traps make ACES robust. ACES shows generality, flexibility, versatility and portability, and is very convenient to use. It undertakes substantial housekeeping behind the scenes and thus minimises the detailed involvement of the user. ACES provides a working set of defaults for simulation to proceed as far as possible. Built- in interfaces allow for reactions and user supplied algorithms to be incorporated . New plant models can be easily appended. Boundary- value problems and optimisation may be tackled using the RERUN feature. ACES is file oriented; a STATE can be saved in a readable form and reactivated later. Thus piecewise simulation is possible. ACES has been illustrated and verified to a large extent using some literature-based examples. Actual plant tests are desirable however to complete the verification of the library. Interaction and graphics are recommended for future work.
Resumo:
A prominent theme emerging in Occupational Health and Safety (OSH) is the development of management systems. A range of interventions, according to a prescribed route detailed by one of the management systems, can be introduced into an organisation with some expectation of improved OSH performance. This thesis attempts to identify the key influencing factors that may impact upon the process of introducing interventions, (according to B88800: 1996, Guide to Implementing Occupational Health and Safety Management Systems) into an organisation. To help identify these influencing factors a review of possible models from the sphere of Total Quality Management (TQM) was undertaken and the most suitable TQM model selected for development and use in aSH. By anchoring the aSH model's development in the reviewed literature a range ofeare, medium and low level influencing factors were identified. This model was developed in conjunction with the research data generated within the case study organisation (rubber manufacturer) and applied to the organisation. The key finding was that the implementation of an OSH intervention was dependant upon three broad vectors of influence. These are the Incentive to introduce change within an organisation which refers to the drivers or motivators for OSH. Secondly the Ability within the management team to actually implement the changes refers to aspects, amongst others, such as leadership, commitment and perceptions of OSH. Ability is in turn itself influenced by the environment within which change is being introduced. TItis aspect of Receptivity refers to the history of the plant and characteristics of the workforce. Aspects within Receptivity include workforce profile and organisational policies amongst others. It was found that the TQM model selected and developed for an OSH management system intervention did explain the core influencing factors and their impact upon OSH performance. It was found that within the organisation the results that may have been expected from implementation of BS8800:1996 were not realised. The OSH model highlighted that given the organisation's starting point, a poor appreciation of the human factors of OSH, gave little reward for implementation of an OSH management system. In addition it was found that general organisational culture can effectively suffocate any attempts to generate a proactive safety culture.
Resumo:
Plant oxylipins are a large family of metabolites derived from polyunsaturated fatty acids. The characterization of mutants or transgenic plants affected in the biosynthesis or perception of oxylipins has recently emphasized the role of the so-called oxylipin pathway in plant defense against pests and pathogens. In this context, presumed functions of oxylipins include direct antimicrobial effect, stimulation of plant defense gene expression, and regulation of plant cell death. However, the precise contribution of individual oxylipins to plant defense remains essentially unknown. To get a better insight into the biological activities of oxylipins, in vitro growth inhibition assays were used to investigate the direct antimicrobial activities of 43 natural oxylipins against a set of 13 plant pathogenic microorganisms including bacteria, oomycetes, and fungi. This study showed unequivocally that most oxylipins are able to impair growth of some plant microbial pathogens, with only two out of 43 oxylipins being completely inactive against all the tested organisms, and 26 oxylipins showing inhibitory activity toward at least three different microbes. Six oxylipins strongly inhibited mycelial growth and spore germination of eukaryotic microbes, including compounds that had not previously been ascribed an antimicrobial activity such as 13-keto-9(Z),11(Z),15(Z)- octadecatrienoic acid and 12-oxo-10,15(Z)-phytodienoic acid. Interestingly this first large-scale comparative assessment of the antimicrobial effects of oxylipins reveals that regulators of plant defense responses are also the most active oxylipins against eukaryotic microorganisms, suggesting that such oxylipins might contribute to plant defense through their effects both on the plant and on pathogens, possibly through related mechanisms. © 2005 American Society of Plant Biologists.