23 resultados para Plant nematodes--Control
em Aston University Research Archive
Resumo:
Computerised production control developments have concentrated on Manufacturing Resources Planning (MRP II) systems. The literature suggests however, that despite the massive investment in hardware, software and management education, successful implementation of such systems in manufacturing industries has proved difficult. This thesis reviews the development of production planning and control systems, in particular, investigates the causes of failures in implementing MRP/MRP II systems in industrial environments and argues that the centralised and top-down planning structure, as well as the routine operational methodology of such systems, is inherently prone to failure. The thesis reviews the control benefits of cellular manufacturing systems but concludes that in more dynamic manufacturing environments, techniques such as Kanban are inappropriate. The basic shortcomings of MRP II systems are highlighted and a new enhanced operational methodology based on distributed planning and control principles is introduced. Distributed Manufacturing Resources Planning (DMRP), was developed as a capacity sensitive production planning and control solution for cellular manufacturing environments. The system utilises cell based, independently operated MRP II systems, integrated into a plant-wide control system through a Local Area Network. The potential benefits of adopting the system in industrial environments is discussed and the results of computer simulation experiments to compare the performance of the DMRP system against the conventional MRP II systems presented. DMRP methodology is shown to offer significant potential advantages which include ease of implementation, cost effectiveness, capacity sensitivity, shorter manufacturing lead times, lower working in progress levels and improved customer service.
Resumo:
The purpose of the work reported here was to investigate the application of neural control to a common industrial process. The chosen problem was the control of a batch distillation. In the first phase towards deployment, a complex software simulation of the process was controlled. Initially, the plant was modelled with a neural emulator. The neural emulator was used to train a neural controller using the backpropagation through time algorithm. A high accuracy was achieved with the emulator after a large number of training epochs. The controller converged more rapidly, but its performance varied more widely over its operating range. However, the controlled system was relatively robust to changes in ambient conditions.
Resumo:
We introduce a technique for quantifying and then exploiting uncertainty in nonlinear stochastic control systems. The approach is suboptimal though robust and relies upon the approximation of the forward and inverse plant models by neural networks, which also estimate the intrinsic uncertainty. Sampling from the resulting Gaussian distributions of the inversion based neurocontroller allows us to introduce a control law which is demonstrably more robust than traditional adaptive controllers.
Resumo:
We have proposed a novel robust inversion-based neurocontroller that searches for the optimal control law by sampling from the estimated Gaussian distribution of the inverse plant model. However, for problems involving the prediction of continuous variables, a Gaussian model approximation provides only a very limited description of the properties of the inverse model. This is usually the case for problems in which the mapping to be learned is multi-valued or involves hysteritic transfer characteristics. This often arises in the solution of inverse plant models. In order to obtain a complete description of the inverse model, a more general multicomponent distributions must be modeled. In this paper we test whether our proposed sampling approach can be used when considering an arbitrary conditional probability distributions. These arbitrary distributions will be modeled by a mixture density network. Importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The effectiveness of the importance sampling from an arbitrary conditional probability distribution will be demonstrated using a simple single input single output static nonlinear system with hysteretic characteristics in the inverse plant model.
Resumo:
We introduce a novel inversion-based neuro-controller for solving control problems involving uncertain nonlinear systems that could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. In this work a novel robust inverse control approach is obtained based on importance sampling from these distributions. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The performance of the new algorithm is illustrated through simulations with example systems.
Resumo:
We consider the direct adaptive inverse control of nonlinear multivariable systems with different delays between every input-output pair. In direct adaptive inverse control, the inverse mapping is learned from examples of input-output pairs. This makes the obtained controller sub optimal, since the network may have to learn the response of the plant over a larger operational range than necessary. Moreover, in certain applications, the control problem can be redundant, implying that the inverse problem is ill posed. In this paper we propose a new algorithm which allows estimating and exploiting uncertainty in nonlinear multivariable control systems. This approach allows us to model strongly non-Gaussian distribution of control signals as well as processes with hysteresis. The proposed algorithm circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider.
Resumo:
We investigate how boundaries in knowledge control, sharing and co-ordination influence UK and German manufacturing firms’ innovation intensity (an indicator of the volume of product change) and product life (an indicator of the pace of generational change). In general UK plants more commonly face knowledge control boundaries related to plant ownership or control, while German plants more commonly face boundaries related to knowledge sharing and knowledge co-ordination between functional groups. Our empirical results emphasise the importance of the strategic management of innovation. Knowledge control boundaries – related to external ownership, group membership and decision making autonomy – have a weak negative influence on plants’ innovation outcomes. Strategic decisions relating to multifunctional working and networking are found to be more important in overcoming knowledge sharing and co-ordination boundaries. Knowledge sharing boundaries, related to plant or company boundaries, prove most important where a plant has no in-house R&D capability. Knowledge co-ordination boundaries related to functional or multi-functional working have strong but differential effects on different innovation output measures: functional boundaries increase product life in both countries, and in Germany maintaining functional boundaries is also associated with increased innovation intensity.
Resumo:
This work reports the developnent of a mathenatical model and distributed, multi variable computer-control for a pilot plant double-effect climbing-film evaporator. A distributed-parameter model of the plant has been developed and the time-domain model transformed into the Laplace domain. The model has been further transformed into an integral domain conforming to an algebraic ring of polynomials, to eliminate the transcendental terms which arise in the Laplace domain due to the distributed nature of the plant model. This has made possible the application of linear control theories to a set of linear-partial differential equations. The models obtained have well tracked the experimental results of the plant. A distributed-computer network has been interfaced with the plant to implement digital controllers in a hierarchical structure. A modern rnultivariable Wiener-Hopf controller has been applled to the plant model. The application has revealed a limitation condition that the plant matrix should be positive-definite along the infinite frequency axis. A new multi variable control theory has emerged fram this study, which avoids the above limitation. The controller has the structure of the modern Wiener-Hopf controller, but with a unique feature enabling a designer to specify the closed-loop poles in advance and to shape the sensitivity matrix as required. In this way, the method treats directly the interaction problems found in the chemical processes with good tracking and regulation performances. Though the ability of the analytical design methods to determine once and for all whether a given set of specifications can be met is one of its chief advantages over the conventional trial-and-error design procedures. However, one disadvantage that offsets to some degree the enormous advantages is the relatively complicated algebra that must be employed in working out all but the simplest problem. Mathematical algorithms and computer software have been developed to treat some of the mathematical operations defined over the integral domain, such as matrix fraction description, spectral factorization, the Bezout identity, and the general manipulation of polynomial matrices. Hence, the design problems of Wiener-Hopf type of controllers and other similar algebraic design methods can be easily solved.
Resumo:
The rapid developments in computer technology have resulted in a widespread use of discrete event dynamic systems (DEDSs). This type of system is complex because it exhibits properties such as concurrency, conflict and non-determinism. It is therefore important to model and analyse such systems before implementation to ensure safe, deadlock free and optimal operation. This thesis investigates current modelling techniques and describes Petri net theory in more detail. It reviews top down, bottom up and hybrid Petri net synthesis techniques that are used to model large systems and introduces on object oriented methodology to enable modelling of larger and more complex systems. Designs obtained by this methodology are modular, easy to understand and allow re-use of designs. Control is the next logical step in the design process. This thesis reviews recent developments in control DEDSs and investigates the use of Petri nets in the design of supervisory controllers. The scheduling of exclusive use of resources is investigated and an efficient Petri net based scheduling algorithm is designed and a re-configurable controller is proposed. To enable the analysis and control of large and complex DEDSs, an object oriented C++ software tool kit was developed and used to implement a Petri net analysis tool, Petri net scheduling and control algorithms. Finally, the methodology was applied to two industrial DEDSs: a prototype can sorting machine developed by Eurotherm Controls Ltd., and a semiconductor testing plant belonging to SGS Thomson Microelectronics Ltd.
Resumo:
A method has been constructed for the solution of a wide range of chemical plant simulation models including differential equations and optimization. Double orthogonal collocation on finite elements is applied to convert the model into an NLP problem that is solved either by the VF 13AD package based on successive quadratic programming, or by the GRG2 package, based on the generalized reduced gradient method. This approach is termed simultaneous optimization and solution strategy. The objective functional can contain integral terms. The state and control variables can have time delays. Equalities and inequalities containing state and control variables can be included into the model as well as algebraic equations and inequalities. The maximum number of independent variables is 2. Problems containing 3 independent variables can be transformed into problems having 2 independent variables using finite differencing. The maximum number of NLP variables and constraints is 1500. The method is also suitable for solving ordinary and partial differential equations. The state functions are approximated by a linear combination of Lagrange interpolation polynomials. The control function can either be approximated by a linear combination of Lagrange interpolation polynomials or by a piecewise constant function over finite elements. The number of internal collocation points can vary by finite elements. The residual error is evaluated at arbitrarily chosen equidistant grid-points, thus enabling the user to check the accuracy of the solution between collocation points, where the solution is exact. The solution functions can be tabulated. There is an option to use control vector parameterization to solve optimization problems containing initial value ordinary differential equations. When there are many differential equations or the upper integration limit should be selected optimally then this approach should be used. The portability of the package has been addressed converting the package from V AX FORTRAN 77 into IBM PC FORTRAN 77 and into SUN SPARC 2000 FORTRAN 77. Computer runs have shown that the method can reproduce optimization problems published in the literature. The GRG2 and the VF I 3AD packages, integrated into the optimization package, proved to be robust and reliable. The package contains an executive module, a module performing control vector parameterization and 2 nonlinear problem solver modules, GRG2 and VF I 3AD. There is a stand-alone module that converts the differential-algebraic optimization problem into a nonlinear programming problem.
Resumo:
A study has been made of the dynamic behaviour of a nuclear fuel reprocessing plant utilising pulsed solvent extraction columns. A flowsheet is presented and the choice of an extraction device is discussed. The plant is described by a series of modules each module representing an item of equipment. Each module consists of a series of differential equations describing the dynamic behaviour of the equipment. The model is written in PMSP, a language developed for dynamic simulation models. The differential equations are solved to predict plant behaviour with time. The dynamic response of the plant to a range of disturbances has been assessed. The interactions between pulsed columns have been demonstrated and illustrated. The importance of auxillary items of equipment to plant performance is demonstrated. Control of the reprocessing plant is considered and the effect of control parameters on performance assessed.
Resumo:
The adaptation of profit sharing creates a fundamental change in employee compensation by making a portion of total compensation directly dependent upon the total profits of the firm and the performance of the employee. The major goal of this study is to test for and measure the impact of the independent variable, a profit sharing plan implemented at Shahvand Industrial Company, upon communication behaviour, communication outcomes, and organisational outcomes as dependent variables. A quasi-experimental non-equivalent control group design with pre and posttest was the research design used to test the effects of profit sharing participation on permanent-part-time operative employees implemented by SIC. Several conclusions were reached as a result of the statistical analysis of the data collected in this study. Overall, few of the hypothesised effects of profit sharing participation appeared to have been realised according to the empirical results of this study. The finding that certain communication behaviours were more favourable for profit sharing participants than for non-participants support the general hypothesis of the integrated profit sharing model. The observed changes in communication behaviours indicate that information sharing and idea generation are important components of the profit sharing process. The results of this study did not reveal any changes in either communication or organisational outcomes. A significant finding of this study is that the implementation of profit sharing plans require a relatively long period of time. Patience is required to achieve high levels of success and management must make long-term commitment to profit sharing. Findings of this study should be interpreted with caution, taking into consideration that most of the previo.us researches on profit sharing have been conducted in Western European or American countries, while the current study was based on data collected from an organisation in a developing country. This implies that the findings reported in this thesis may not be comparable in certain respects to results derived from companies in major industrialised economies.
Resumo:
The concept of a task is fundamental to the discipline of ergonomics. Approaches to the analysis of tasks began in the early 1900's. These approaches have evolved and developed to the present day, when there is a vast array of methods available. Some of these methods are specific to particular contexts or applications, others more general. However, whilst many of these analyses allow tasks to be examined in detail, they do not act as tools to aid the design process or the designer. The present thesis examines the use of task analysis in a process control context, and in particular the use of task analysis to specify operator information and display requirements in such systems. The first part of the thesis examines the theoretical aspect of task analysis and presents a review of the methods, issues and concepts relating to task analysis. A review of over 80 methods of task analysis was carried out to form a basis for the development of a task analysis method to specify operator information requirements in industrial process control contexts. Of the methods reviewed Hierarchical Task Analysis was selected to provide such a basis and developed to meet the criteria outlined for such a method of task analysis. The second section outlines the practical application and evolution of the developed task analysis method. Four case studies were used to examine the method in an empirical context. The case studies represent a range of plant contexts and types, both complex and more simple, batch and continuous and high risk and low risk processes. The theoretical and empirical issues are drawn together and a method developed to provide a task analysis technique to specify operator information requirements and to provide the first stages of a tool to aid the design of VDU displays for process control.
Resumo:
This thesis addresses the viability of automatic speech recognition for control room systems; with careful system design, automatic speech recognition (ASR) devices can be useful means for human computer interaction in specific types of task. These tasks can be defined as complex verbal activities, such as command and control, and can be paired with spatial tasks, such as monitoring, without detriment. It is suggested that ASR use be confined to routine plant operation, as opposed the critical incidents, due to possible problems of stress on the operators' speech. It is proposed that using ASR will require operators to adapt a commonly used skill to cater for a novel use of speech. Before using the ASR device, new operators will require some form of training. It is shown that a demonstration by an experienced user of the device can lead to superior performance than instructions. Thus, a relatively cheap and very efficient form of operator training can be supplied by demonstration by experienced ASR operators. From a series of studies into speech based interaction with computers, it is concluded that the interaction be designed to capitalise upon the tendency of operators to use short, succinct, task specific styles of speech. From studies comparing different types of feedback, it is concluded that operators be given screen based feedback, rather than auditory feedback, for control room operation. Feedback will take two forms: the use of the ASR device will require recognition feedback, which will be best supplied using text; the performance of a process control task will require task feedback integrated into the mimic display. This latter feedback can be either textual or symbolic, but it is suggested that symbolic feedback will be more beneficial. Related to both interaction style and feedback is the issue of handling recognition errors. These should be corrected by simple command repetition practices, rather than use error handling dialogues. This method of error correction is held to be non intrusive to primary command and control operations. This thesis also addresses some of the problems of user error in ASR use, and provides a number of recommendations for its reduction.