2 resultados para Plant genetic transformation
em Aston University Research Archive
Resumo:
Many attempts have been made to overcome problems involved in character recognition which have resulted in the manufacture of character reading machines. An investigation into a new approach to character recognition is described. Features for recognition are Fourier coefficients. These are generated optically by convolving characters with periodic gratings. The development of hardware to enable automatic measurement of contrast and position of periodic shadows produced by the convolution is described. Fourier coefficients of character sets were measured, many of which are tabulated. Their analysis revealed that a few low frequency sampling points could be selected to recognise sets of numerals. Limited treatment is given to show the effect of type face variations on the values of coefficients which culminated in the location of six sampling frequencies used as features to recognise numerals in two type fonts. Finally, the construction of two character recognition machines is compared and contrasted. The first is a pilot plant based on a test bed optical Fourier analyser, while the second is a more streamlined machine d(3signed for high speed reading. Reasons to indicate that the latter machine would be the most suitable to adapt for industrial and commercial applications are discussed.
Resumo:
Fifteen Miscanthus genotypes grown in five locations across Europe were analysed to investigate the influence of genetic and environmental factors on cell wall composition. Chemometric techniques combining near infrared reflectance spectroscopy and conventional chemical analyses were used to construct calibration models for determination of acid detergent lignin, acid detergent fibre, and neutral detergent fibre from sample spectra. The developed equations were shown to predict cell wall components with a good degree of accuracy and significant genetic and environmental variation was identified. The influence of nitrogen and potassium fertiliser on the dry matter yield and cell wall composition of M. x giganteus was investigated. A detrimental affect on feedstock quality was observed to result from application of these inputs which resulted in an overall reduction in concentrations of cell wall components and increased accumulation of ash within the biomass. Pyrolysis-gas chromatography-mass spectrometry and thermo-gravimetric analysis indicates that genotypes other than the commercially cultivated M. x giganteus have potential for use in energy conversion processes and in the bio-refining. The yields and quality parameters of the pyrolysis liquids produced from Miscanthus compared favourably with that produced from SRC willow and produced a more stable pyrolysis liquid with a higher lower heating value. Overall, genotype had a more significant effect on cell wall composition than environment. This indicates good potential for dissection of this trait by QTL analysis and also for plant breeding to produce new genotypes with improved feedstock characteristics for energy conversion.