8 resultados para Planning software
em Aston University Research Archive
Resumo:
The loss of habitat and biodiversity worldwide has led to considerable resources being spent for conservation purposes on actions such as the acquisition and management of land, the rehabilitation of degraded habitats, and the purchase of easements from private landowners. Prioritising these actions is challenging due to the complexity of the problem and because there can be multiple actors undertaking conservation actions, often with divergent or partially overlapping objectives. We use a modelling framework to explore this issue with a study involving two agents sequentially purchasing land for conservation. We apply our model to simulated data using distributions taken from real data to simulate the cost of patches and the rarity and co-occurence of species. In our model each agent attempted to implement a conservation network that met its target for the minimum cost using the conservation planning software Marxan. We examine three scenarios where the conservation targets of the agents differ. The first scenario (called NGO-NGO) models the situation where two NGOs are both are targeting different sets of threatened species. The second and third scenarios (called NGO-Gov and Gov-NGO, respectively) represent a case where a government agency attempts to implement a complementary conservation network representing all species, while an NGO is focused on achieving additional protection for the most endangered species. For each of these scenarios we examined three types of interactions between agents: i) acting in isolation where the agents are attempting to achieve their targets solely though their own actions ii) sharing information where each agent is aware of the species representation achieved within the other agent’s conservation network and, iii) pooling resources where agents combine their resources and undertake conservation actions as a single entity. The latter two interactions represent different types of collaborations and in each scenario we determine the cost savings from sharing information or pooling resources. In each case we examined the utility of these interactions from the viewpoint of the combined conservation network resulting from both agents' actions, as well as from each agent’s individual perspective. The costs for each agent to achieve their objectives varied depending on the order in which the agents acted, the type of interaction between agents, and the specific goals of each agent. There were significant cost savings from increased collaboration via sharing information in the NGO-NGO scenario were the agent’s representation goals were mutually exclusive (in terms of specie targeted). In the NGO-Gov and Gov-NGO scenarios, collaboration generated much smaller savings. If the two agents collaborate by pooling resources there are multiple ways the total cost could be shared between both agents. For each scenario we investigate the costs and benefits for all possible cost sharing proportions. We find that there are a range of cost sharing proportions where both agents can benefit in the NGO-NGO scenarios while the NGO-Gov and Gov-NGO scenarios again showed little benefit. Although the model presented here has a range of simplifying assumptions, it demonstrates that the value of collaboration can vary significantly in different situations. In most cases, collaborating would have associated costs and these costs need to be weighed against the potential benefits from collaboration. The model demonstrates a method for determining the range of collaboration costs that would result in collaboration providing an efficient use of scarce conservation resources.
Resumo:
The development of an information system in Caribbean public sector organisations is usually seen as a matter of installing hardware and software according to a directive from senior management, without much planning. This causes huge investment in procuring hardware and software without improving overall system performance. Increasingly, Caribbean organisations are looking for assurances on information system performance before making investment decisions not only to satisfy the funding agencies, but also to be competitive in this dynamic and global business world. This study demonstrates an information system planning approach using a process-reengineering framework. Firstly, the stakeholders for the business functions are identified along with their relationships and requirements. Secondly, process reengineering is carried out to develop the system requirements. Accordingly, information technology is selected through detailed system requirement analysis. Thirdly, cost-benefit analysis, identification of critical success factors and risk analysis are carried out to strengthen the selection. The entire methodology has been demonstrated through an information system project in the Barbados drug service, a public sector organisation in the Caribbean.
Resumo:
The aim of this research was to improve the quantitative support to project planning and control principally through the use of more accurate forecasting for which new techniques were developed. This study arose from the observation that in most cases construction project forecasts were based on a methodology (c.1980) which relied on the DHSS cumulative cubic cost model and network based risk analysis (PERT). The former of these, in particular, imposes severe limitations which this study overcomes. Three areas of study were identified, namely growth curve forecasting, risk analysis and the interface of these quantitative techniques with project management. These fields have been used as a basis for the research programme. In order to give a sound basis for the research, industrial support was sought. This resulted in both the acquisition of cost profiles for a large number of projects and the opportunity to validate practical implementation. The outcome of this research project was deemed successful both in theory and practice. The new forecasting theory was shown to give major reductions in projection errors. The integration of the new predictive and risk analysis technologies with management principles, allowed the development of a viable software management aid which fills an acknowledged gap in current technology.
Resumo:
The widespread implementation of Manufacturing Resource Planning (MRPII) systems in this country and abroad and the reported dissatisfaction with their use formed the initial basis of this piece of research which concentrates on the fundamental theory and design of the Closed Loop MRPII system itself. The dissertation concentrates on two key aspects namely; how Master Production Scheduling is carried out in differing business environments and how well the `closing of the loop' operates by checking the capcity requirements of the different levels of plans within an organisation. The main hypothesis which is tested is that in U.K. manufacturing industry, resource checks are either not being carried out satisfactorily or they are not being fed back to the appropriate plan in a timely fashion. The research methodology employed involved initial detailed investigations into Master Scheduling and capacity planning in eight diverse manufacturing companies. This was followed by a nationwide survey of users in 349 companies, a survey of all the major suppliers of Production Management software in the U.K. and an analysis of the facilities offered by current software packages. The main conclusion which is drawn is that the hypothesis is proved in the majority of companies in that only just over 50% of companies are attempting Resource and Capacity Planning and only 20% are successfully feeding back CRP information to `close the loop'. Various causative factors are put forward and remedies are suggested.
Resumo:
The present study describes a pragmatic approach to the implementation of production planning and scheduling techniques in foundries of all types and looks at the use of `state-of-the-art' management control and information systems. Following a review of systems for the classification of manufacturing companies, a definitive statement is made which highlights the important differences between foundries (i.e. `component makers') and other manufacturing companies (i.e. `component buyers'). An investigation of the manual procedures which are used to plan and control the manufacture of components reveals the inherent problems facing foundry production management staff, which suggests the unsuitability of many manufacturing techniques which have been applied to general engineering companies. From the literature it was discovered that computer-assisted systems are required which are primarily `information-based' rather than `decision based', whilst the availability of low-cost computers and `packaged-software' has enabled foundries to `get their feet wet' without the financial penalties which characterized many of the early attempts at computer-assistance (i.e. pre-1980). Moreover, no evidence of a single methodology for foundry scheduling emerged from the review. A philosophy for the development of a CAPM system is presented, which details the essential information requirements and puts forward proposals for the subsequent interactions between types of information and the sub-system of CAPM which they support. The work developed was oriented specifically at the functions of production planning and scheduling and introduces the concept of `manual interaction' for effective scheduling. The techniques developed were designed to use the information which is readily available in foundries and were found to be practically successful following the implementation of the techniques into a wide variety of foundries. The limitations of the techniques developed are subsequently discussed within the wider issues which form a CAPM system, prior to a presentation of the conclusions which can be drawn from the study.
Resumo:
The thesis presents an account of an attempt to utilize expert systems within the domain of production planning and control. The use of expert systems was proposed due to the problematical nature of a particular function within British Steel Strip Products' Operations Department: the function of Order Allocation, allocating customer orders to a production week and site. Approaches to tackling problems within production planning and control are reviewed, as are the general capabilities of expert systems. The conclusions drawn are that the domain of production planning and control contains both `soft' and `hard' problems, and that while expert systems appear to be a useful technology for this domain, this usefulness has by no means yet been demonstrated. Also, it is argued that the main stream methodology for developing expert systems is unsuited for the domain. A problem-driven approach is developed and used to tackle the Order Allocation function. The resulting system, UAAMS, contained two expert components. One of these, the scheduling procedure was not fully implemented due to inadequate software. The second expert component, the product routing procedure, was untroubled by such difficulties, though it was unusable on its own; thus a second system was developed. This system, MICRO-X10, duplicated the function of X10, a complex database query routine used daily by Order Allocation. A prototype version of MICRO-X10 proved too slow to be useful but allowed implementation and maintenance issues to be analysed. In conclusion, the usefulness of the problem-driven approach to expert systems development within production planning and control is demonstrated but restrictions imposed by current expert system software are highlighted in that the abilities of such software to cope with `hard' scheduling constructs and also the slow processing speeds of such software can restrict the current usefulness of expert systems within production planning and control.
Resumo:
In recent decades, a number of sustainable strategies and polices have been created to protect and preserve our water environments from the impacts of growing communities. The Australian approach, Water Sensitive Urban Design (WSUD), defined as the integration of urban planning and design with the urban water cycle management, has made considerable advances on design guidelines since 2000. WSUD stormwater management systems (e.g. wetlands, bioretentions, porous pavement etc), also known as Best Management Practices (BMPs) or Low Impact Development (LID), are slowly gaining popularity across Australia, the USA and Europe. There have also been significant improvements in how to model the performance of the WSUD technologies (e.g. MUSIC software). However, the implementation issues of these WSUD practices are mainly related to ongoing institutional capacity. Some of the key problems are associated with a limited awareness of urban planners and designers; in general, they have very little knowledge of these systems and their benefits to the urban environments. At the same time, hydrological engineers should have a better understanding of building codes and master plans. The land use regulations are equally as important as the physical site conditions for determining opportunities and constraints for implementing WSUD techniques. There is a need for procedures that can make a better linkage between urban planners and WSUD engineering practices. Thus, this paper aims to present the development of a general framework for incorporating WSUD technologies into the site planning process. The study was applied to lot-scale in the Melbourne region, Australia. Results show the potential space available for fitting WSUD elements, according to building requirements and different types of housing densities. © 2011 WIT Press.
Resumo:
Product quality planning is a fundamental part of quality assurance in manufacturing. It is composed of the distribution of quality aims over each phase in product development and the deployment of quality operations and resources to accomplish these aims. This paper proposes a quality planning methodology based on risk assessment and the planning tasks of product development are translated into evaluation of risk priorities. Firstly, a comprehensive model for quality planning is developed to address the deficiencies of traditional quality function deployment (QFD) based quality planning. Secondly, a novel failure knowledge base (FKB) based method is discussed. Then a mathematical method and algorithm of risk assessment is presented for target decomposition, measure selection, and sequence optimization. Finally, the proposed methodology has been implemented in a web based prototype software system, QQ-Planning, to solve the problem of quality planning regarding the distribution of quality targets and the deployment of quality resources, in such a way that the product requirements are satisfied and the enterprise resources are highly utilized. © Springer-Verlag Berlin Heidelberg 2010.