59 resultados para Planning decision support systems
em Aston University Research Archive
Resumo:
The social processes involved in engaging small groups of 3-15 managers in their sharing, organising, acquiring, creating and using knowledge can be supported with software and facilitator assistance. This paper introduces three such systems that we have used as facilitators to support groups of managers in their social process of decision-making by managing knowledge during face-to-face meetings. The systems include Compendium, Group Explorer (with Decision Explorer) and V*I*S*A. We review these systems for group knowledge management where the aim is for better decision-making, and discuss the principles of deploying each in a group meeting. © 2006 Operational Research Society Ltd. All rights reserved.
Resumo:
Clinical Decision Support Systems (CDSSs) need to disseminate expertise in formats that suit different end users and with functionality tuned to the context of assessment. This paper reports research into a method for designing and implementing knowledge structures that facilitate the required flexibility. A psychological model of expertise is represented using a series of formally specified and linked XML trees that capture increasing elements of the model, starting with hierarchical structuring, incorporating reasoning with uncertainty, and ending with delivering the final CDSS. The method was applied to the Galatean Risk and Safety Tool, GRiST, which is a web-based clinical decision support system (www.egrist.org) for assessing mental-health risks. Results of its clinical implementation demonstrate that the method can produce a system that is able to deliver expertise targetted and formatted for specific patient groups, different clinical disciplines, and alternative assessment settings. The approach may be useful for developing other real-world systems using human expertise and is currently being applied to a logistics domain. © 2013 Polish Information Processing Society.
Resumo:
The purpose of this research is to explore the disparity between the existing model-orientated bioenergy decision support system (DSS) functions and what is desired by practitioners, in particular bioenergy project developers. This research has compiled the published bioenergy project development models, to highlight the characteristics emphasised by academics. When contrasted against a UK practitioner’s perspective through the administration of a Likert style questionnaire, it is clear that the general DSS issues still persist. Finally, the research suggests how this ’theory-practice’ divide could be addressed. The research contribute
Resumo:
Clinical decision support systems (CDSSs) often base their knowledge and advice on human expertise. Knowledge representation needs to be in a format that can be easily understood by human users as well as supporting ongoing knowledge engineering, including evolution and consistency of knowledge. This paper reports on the development of an ontology specification for managing knowledge engineering in a CDSS for assessing and managing risks associated with mental-health problems. The Galatean Risk and Safety Tool, GRiST, represents mental-health expertise in the form of a psychological model of classification. The hierarchical structure was directly represented in the machine using an XML document. Functionality of the model and knowledge management were controlled using attributes in the XML nodes, with an accompanying paper manual for specifying how end-user tools should behave when interfacing with the XML. This paper explains the advantages of using the web-ontology language, OWL, as the specification, details some of the issues and problems encountered in translating the psychological model to OWL, and shows how OWL benefits knowledge engineering. The conclusions are that OWL can have an important role in managing complex knowledge domains for systems based on human expertise without impeding the end-users' understanding of the knowledge base. The generic classification model underpinning GRiST makes it applicable to many decision domains and the accompanying OWL specification facilitates its implementation.
Resumo:
Industry practitioners are seeking to create optimal logistics networks through more efficient decision-making leading to a shift of power from a centralized position to a more decentralized approach. This has led to researchers, exploring with vigor, the application of agent based modeling (ABM) in supply chains and more recently, its impact on decision-making. This paper investigates reasons for the shift to decentralized decision-making and the impact on supply chains. Effective decentralization of decision-making with ABM and hybrid modeling is investigated, observing the methods and potential of achieving optimality.
Resumo:
This paper investigates neural network-based probabilistic decision support system to assess drivers' knowledge for the objective of developing a renewal policy of driving licences. The probabilistic model correlates drivers' demographic data to their results in a simulated written driving exam (SWDE). The probabilistic decision support system classifies drivers' into two groups of passing and failing a SWDE. Knowledge assessment of drivers within a probabilistic framework allows quantifying and incorporating uncertainty information into the decision-making system. The results obtained in a Jordanian case study indicate that the performance of the probabilistic decision support systems is more reliable than conventional deterministic decision support systems. Implications of the proposed probabilistic decision support systems on the renewing of the driving licences decision and the possibility of including extra assessment methods are discussed.
Resumo:
Biomass is projected to account for approximately half of the new energy production required to achieve the 2020 primary energy target in the UK. Combined heat and power (CHP) bioenergy systems are not only a highly efficient method of energy conversion, at smaller-scales a significant proportion of the heat produced can be effectively utilised for hot water, space heating or industrial heating purposes. However, there are many barriers to project development and this has greatly inhibited deployment in the UK. Project viability is highly subjective to changes in policy, regulation, the finance market and the low cost incumbent; a high carbon centralised energy system. Unidentified or unmitigated barriers occurring during the project lifecycle may not only negatively impact on the project but could ultimately lead to project failure. The research develops a decision support system (DSS) for small-scale (500 kWe to 10 MWe) biomass combustion CHP project development and risk management in the early stages of a potential project’s lifecycle. By supporting developers in the early stages of project development with financial, scheduling and risk management analysis, the research aims to reduce the barriers identified and streamline decision-making. A fuzzy methodology is also applied throughout the developed DSS to support developers in handling the uncertain or approximate information often held at the early stages of the project lifecycle. The DSS is applied to a case study of a recently failed (2011) small-scale biomass CHP project to demonstrate its applicability and benefits. The application highlights that the proposed development within the case study was not viable. Moreover, further analysis of the possible barriers with the DSS confirmed that some possible modifications to be project could have improved this, such as a possible change of feedstock to a waste or residue, addressing the unnecessary land lease cost or by increasing heat utilisation onsite. This analysis is further supported by a practitioner evaluation survey that confirms the research contribution and objectives are achieved.
Resumo:
This thesis considers management decision making at the ward level in hospitals especially by ward sisters, and the effectiveness of the intervention of a decision support system. Nursing practice theories were related to organisation and management theories in order to conceptualise a decision making framework for nurse manpower planning and deployment at the ward level. Decision and systems theories were explored to understand the concepts of decision making and the realities of power in an organisation. In essence, the hypothesis was concerned with changes in patterns of decision making that could occur with the intervention of a decision support system and that the degree of change would be governed by a set of `difficulty' factors within wards in a hospital. During the course of the study, a classification of ward management decision making was created, together with the development and validation of measuring instruments to test the research hypothesis. The decision support system used was rigorously evaluated to test whether benefits did accrue from its implementation. Quantitative results from sample wards together with qualitative information collected, were used to test this hypothesis and the outcomes postulated were supported by these findings. The main conclusion from this research is that a more rational approach to management decision making is feasible, using information from a decision support system. However, wards and ward sisters that need the most assistance, where the `difficulty' factors in the organisation are highest, benefit the least from this type of system. Organisational reviews are needed on these identified wards, involving managers and doctors, to reduce the levels of un-coordinated activities and disruption.
Resumo:
The importance of non-technical factors in the design and implementation of information systems has been increasingly recognised by both researchers and practitioners, and recent literature highlights the need for new tools and techniques with an organisational, rather than technical, focus. The gap between what is technically possible and what is generally practised, is particularly wide in the sales and marketing field. This research describes the design and implementation of a decision support system (DSS) for marketing planning and control in a small, but complex company and examines the nature of the difficulties encountered. An intermediary with functional, rather than technical, expertise is used as a strategy for overcoming these by taking control of the whole of the systems design and implementation cycle. Given the practical nature of the research, an action research approach is adopted with the researcher undertaking this role. This approach provides a detailed case study of what actually happens during the DSS development cycle, allowing the influence of organisational factors to be captured. The findings of the research show how the main focus of the intermediary's role needs to be adapted over the systems development cycle; from coordination and liaison in the pre-design and design stages, to systems champion during the first part of the implementation stage, and finally to catalyst to ensure that the DSS is integrated into the decision-making process. Two practical marketing exercises are undertaken which illustrate the nature of the gap between the provision of information and its use. The lack of a formal approach to planning and control is shown to have a significant effect on the way the DSS is used and the role of the intermediary is extended successfully to accommodate this factor. This leads to the conclusion that for the DSS to play a fully effective role, small firms may need to introduce more structure into their marketing planning, and that the role of the intermediary, or Information Coordinator, should include the responsibility for introducing new techniques and ideas to aid with this.
Resumo:
The existing method of pipeline health monitoring, which requires an entire pipeline to be inspected periodically, is unproductive. A risk-based decision support system (DSS) that reduces the amount of time spent on inspection has been presented. The risk-based DSS uses the analytic hierarchy process (AHP), a multiple attribute decision-making technique, to identify the factors that influence failure on specific segments and analyzes their effects by determining probability of occurrence of these risk factors. The severity of failure is determined through consequence analysis. From this, the effect of a failure caused by each risk factor can be established in terms of cost and the cumulative effect of failure is determined through probability analysis. The model optimizes the cost of pipeline operations by reducing subjectivity in selecting a specific inspection method, identifying and prioritizing the right pipeline segment for inspection and maintenance, deriving budget allocation, providing guidance to deploy the right mix labor for inspection and maintenance, planning emergency preparation, and deriving logical insurance plan. The proposed methodology also helps derive inspection and maintenance policy for the entire pipeline system, suggest design, operational philosophy, and construction methodology for new pipelines.
Resumo:
Conventional project management techniques are not always sufficient to ensure time, cost and quality achievement of large-scale construction projects due to complexity in planning, design and implementation processes. The main reasons for project non-achievement are changes in scope and design, changes in government policies and regulations, unforeseen inflation, underestimation and improper estimation. Projects that are exposed to such an uncertain environment can be effectively managed with the application of risk management throughout the project's life cycle. However, the effectiveness of risk management depends on the technique through which the effects of risk factors are analysed/quantified. This study proposes the Analytic Hierarchy Process (AHP), a multiple attribute decision making technique, as a tool for risk analysis because it can handle subjective as well as objective factors in a decision model that are conflicting in nature. This provides a decision support system (DSS) to project management for making the right decision at the right time for ensuring project success in line with organisation policy, project objectives and a competitive business environment. The whole methodology is explained through a case application of a cross-country petroleum pipeline project in India and its effectiveness in project management is demonstrated.
Resumo:
Hospitals everywhere are integrating health data using electronic health record (EHR) systems, and disparate and multimedia patient data can be input by different caregivers at different locations as encapsulated patient profiles. Healthcare institutions are also using the flexibility and speed of wireless computing to improve quality and reduce costs. We are developing a mobile application that allows doctors to efficiently record and access complete and accurate real-time patient information. The system integrates medical imagery with textual patient profiles as well as expert interactions by healthcare personnel using knowledge management and case-based reasoning techniques. The application can assist other caregivers in searching large repositories of previous patient cases. Patients' symptoms can be input to a portable device and the application can quickly retrieve similar profiles which can be used to support effective diagnoses and prognoses by comparing symptoms, treatments, diagnosis, test results and other patient information. © 2007 Sage Publications.
Resumo:
In the field of mental health risk assessment, there is no standardisation between the data used in different systems. As a first step towards the possible interchange of data between assessment tools, an ontology has been constructed for a particular one, GRiST (Galatean Risk Screening Tool). We briefly introduce GRiST and its data structures, then describe the ontology and the benefits that have already been realised from the construction process. For example, the ontology has been used to check the consistency of the various trees used in the model. We then consider potential uses in integration of data from other sources. © 2009 IEEE.
Resumo:
Due to vigorous globalisation and product proliferation in recent years, more waste has been produced by the soaring manufacturing activities. This has contributed to the significant need for an efficient waste management system to ensure, with all efforts, the waste is properly treated for recycling or disposed. This paper presents a Decision Support System (DSS) framework, based on Constraint Logic Programming (CLP), for the collection management of industrial waste (of all kinds) and discusses the potential employment of Radio-Frequency Identification Technology (RFID) to improve several critical procedures involved in managing waste collection. This paper also demonstrates a widely distributed and semi-structured network of waste producing enterprises (e.g. manufacturers) and waste processing enterprises (i.e. waste recycling/treatment stations) improving their operations planning by means of using the proposed DSS. The potential RFID applications to update and validate information in a continuous manner to bring value-added benefits to the waste collection business are also presented. © 2012 Inderscience Enterprises Ltd.
Resumo:
This paper presents a new, dynamic feature representation method for high value parts consisting of complex and intersecting features. The method first extracts features from the CAD model of a complex part. Then the dynamic status of each feature is established between various operations to be carried out during the whole manufacturing process. Each manufacturing and verification operation can be planned and optimized using the real conditions of a feature, thus enhancing accuracy, traceability and process control. The dynamic feature representation is complementary to the design models used as underlining basis in current CAD/CAM and decision support systems. © 2012 CIRP.