52 resultados para Placer deposits
em Aston University Research Archive
Resumo:
In cases of late-onset Alzheimer’s disease (AD), there is a spatial correlation between the classsic ‘cored’ type of Beta-amyloid (Abeta) deposit and the large vertically penetrating arterioles in the cerebral cortex suggesting that blood vessels are involved in the pathogenesis of the classic deposits. In this chapter, the spatial correlations between the diffuse, primitive, and classic Abeta deposits and blood vessels were studied in 10 cases of early-onset AD in the age range 40 – 65 years. Sections of frontal cortex were immunostained with antibodies against Abeta?and with collagen IV to reveal the Abeta deposits and blood vessel profiles. In the early-onset cases as a whole, all types of Abeta? deposit and blood vessel profiles were distributed in clusters. There was a positive spatial correlation between the clusters of the diffuse Abeta deposits and the larger (>10µm) and smaller diameter (<10?m) blood vessel profiles in one and three cases respectively. The primitive and classic Abeta deposits were spatially correlated with larger and smaller blood vessels both in three and four cases respectively. Spatial correlations between the Abeta deposits and blood vessels may be more prevalent in cases expressing amyloid precursor protein (APP) than presenilin 1 (PSEN1) mutations. Apolipoprotein E (Apo E) genotype of the patient did not appear to influence the spatial correlation with blood vessel profiles. The data suggest that the larger diameter blood vessels are less important in the pathogenesis of the classic Abeta deposits in early-onset compared with late-onset AD.
Resumo:
The spatial patterns of beta-amyloid (Abeta) deposits and neurofibrillary tangles (NFT) were studied in areas of the cerebral cortex in 16 patients with the late-onset, sporadic form of Alzheimer’s disease (AD). Diffuse, primitive, and classic Abeta deposits and NFT were aggregated into clusters; the clusters being regularly distributed parallel to the pia mater in many areas. In a significant proportion of regions, the sizes of the regularly distributed clusters approximated to those of the cells of origin of the cortico-cortical projections. The diffuse and primitive Abeta deposits exhibited a similar range of spatial patterns but the classic Abeta deposits occurred less frequently in large clusters >6400microm. In addition, the NFT often occurred in larger regularly distributed clusters than the Abeta deposits. The location, size, and distribution of the clusters of Abeta deposits and NFT supports the hypothesis that AD is a 'disconnection syndrome' in which degeneration of specific cortico-cortical and cortico-hippocampal pathways results in synaptic disconnection and the formation of clusters of NFT and Abeta deposits.
Resumo:
In the variant form of Creutzfeldt-Jakob disease (vCJD), 'florid' deposits of the protease resistant form of prion protein (PrP(sc)) were aggregated around the cerebral blood vessels suggesting the possibility that prions may spread into the brain via the cerebral microcirculation. The objective of the present study was to determine whether the pathology was spatially related to blood vessels in cases of sporadic CJD (sCJD), a disease without an iatrogenic etiology, and therefore, less likely to be caused by hematogenous spread. Hence, the spatial correlations between the vacuolation ('spongiform change'), PrP(sc) deposits, and the blood vessels were studied in immunolabelled sections of the cerebral cortex and cerebellum in eleven cases of the common M/M1 subtype of sCJD. Both the vacuolation and the PrP(sc) deposits were spatially correlated with the blood vessels; the PrP(sc) deposits being more focally distributed around the vessels than the vacuoles. The frequency of positive spatial correlations was similar in the different gyri of the cerebral cortex, in the upper and lower cortical laminae, and in the molecular layer of the cerebellum. It is hypothesized that the spatial correlation is attributable to factors associated with the blood vessels which promote the aggregation of PrP(sc) to form deposits rather than representing the hematogenous spread of the disease. The aggregated form of PrP(sc) then enhances cell death and may encourages the development of vacuolation in the vicinity of the blood vessels.
Resumo:
The objective is to study beta-amyloid (Abeta) deposition in dementia with Lewy bodies (DLB) with Alzheimer's disease (AD) pathology (DLB/AD). The size frequency distributions of the Abeta deposits were studied and fitted by log-normal and power-law models. Patients were ten clinically and pathologically diagnosed DLB/AD cases. Size distributions had a single peak and were positively skewed and similar to those described in AD and Down's syndrome. Size distributions had smaller means in DLB/AD than in AD. Log-normal and power-law models were fitted to the size distributions of the classic and diffuse deposits, respectively. Size distributions of Abeta deposits were similar in DLB/AD and AD. Size distributions of the diffuse deposits were fitted by a power-law model suggesting that aggregation/disaggregation of Abeta was the predominant factor, whereas the classic deposits were fitted by a log-normal distribution suggesting that surface diffusion was important in the pathogenesis of the classic deposits.
Resumo:
This study tested whether the laminar distribution of the β-amyloid (Aβ) deposits in dementia with Lewy bodies (DLB) cases with significant Alzheimer's disease (AD) pathology (DLB/AD) was similar to "pure" AD. In DLB/AD, the maximum density of the diffuse and primitive deposits occurred either in the upper laminae or a bimodal distribution was present with density peaks in the upper and lower laminae. A bimodal distribution of the classic Aβ deposits was also observed. Compared with AD, DLB/AD cases had fewer primitive deposits relative to the diffuse and classic deposits; the primitive deposits exhibited a bimodal distribution more frequently, and the diffuse deposits occurred more often in the upper laminae. These results suggest that Aβ pathology in DLB/AD may not simply represent the presence of associated AD. © 2006 Sage Publications.
Resumo:
In the cerebral cortex of cases of sporadic Creutzfeldt-Jakob disease (sCJD), the vacuolation (spongiform change) and PrP deposits are aggregated into clusters which are regularly distributed parallel to the pia mater. The objective of the present study was to determine the spatial relationships between the clusters of the vacuoles and PrP deposits and between the pathological changes and variations in the density of surviving neurons. In areas with low densities of pathological change, clusters of vacuoles were spatially correlated with the surviving neurons and not with the PrP deposits. By contrast, in more significantly affected areas, clusters of vacuoles were spatially correlated with those of the PrP deposits and not with the surviving neurons. In addition, areas with a high density of vacuoles and a low density of PrP deposits exhibited no spatial correlations between the variables. These data suggest that the spatial relationships between the vacuolation, PrP deposits and surviving neurons in sCJD depend on the density of lesions present. Differences in the pattern of correlation may reflect the developmental stage of the pathology in particular cortical areas.
Resumo:
The density of senile plaques (SP) and neurofibrillary tangles (NFT) was studied in Glees and Marsland stained sections of the hippocampus and parahippocampal gyrus (PHG) in 20 pateints with Alzheimer's disease. In addition, in six of the patients, the density of beta/A4 protein deposits, as revealed by immunohistochemistry and neurofibrillary changes demonstrated with the Gallyas stain, were studied in adjacent sections. The density of Glees SP and beta/A4 deposits was significantly greater in area CA1 of the hippocampus and in the subiculum than in the PHG. Hence, neurofibrillary degeneration appears to be a more important lesion than beta/A4 deposition in the hippocampus compared with the PHG. In addition, the detailed distribution of the lesions in the hippocampus could be explained if beta/A4/SP and NFT occur on the axon terminals and in the cell bodies respectively of the same neurons.
Resumo:
In sporadic Alzheimer’s disease (SAD), the classic (‘dense-cored’) ß-amyloid (Aß) deposits are aggregated around the larger blood vessels in the upper laminae of the cerebral cortex. To determine whether a similar relationship exists in familial AD (FAD), the spatial correlations between the diffuse, primitive, and classic ß-amyloid (Aß deposits and blood vessels were studied in ten FAD cases including cases linked to amyloid precursor protein (APP) and presenilin (PSEN) gene mutations and expressing apolipoprotein E (apo E) allele E4. Sections of frontal cortex were immunolabelled with antibodies against Aß and with collagen IV to reveal the Aß deposits and blood vessel profiles. In the FAD cases as a whole, Aßdeposits were distributed in clusters. There was a positive spatial correlation between the clusters of the diffuse Aßdeposits and the larger (>10 µm) and smaller diameter (<10 µm) blood vessels in one and three cases respectively. The primitive Aß deposits were spatially correlated with larger and smaller blood vessels each in four cases and the classic deposits in three and four cases respectively. Apo E genotype of the patient did not influence spatial correlation with blood vessels. Hence, spatial correlations between the classic deposits and larger diameter blood vessels were significantly less frequent in FAD compared with SAD. It was concluded that both Aß deposit morphology and AD subtype determine spatial correlations with blood vessels in AD.
Resumo:
TThe size frequency distributions of ß-amyloid (Aß) and prion protein (PrPsc) deposits were studied in Alzheimer’s disease (AD) and the variant form of Creutzfeldt-Jakob disease (vCJD) respectively. All size distributions were unimodal and positively skewed. Aß deposits reached a greater maximum size and their distributions were significantly less skewed than the PrPsc deposits. All distributions were approximately log-normal in shape but only the diffuse PrPsc deposits did not deviate significantly from a log-normal model. There were fewer larger classic Aß deposits than predicted and the florid PrPsc deposits occupied a more restricted size range than predicted by a log-normal model. Hence, Aß deposits exhibit greater growth than the corresponding PrPsc deposits. Surface diffusion may be particularly important in determining the growth of the diffuse PrPsc deposits. In addition, there are factors limiting the maximum size of the Aß and florid PrPsc deposits.
Resumo:
Various hypotheses could explain the relationship between beta-amyloid (Abeta) deposition and the vasculature in Alzheimer's disease (AD). Amyloid deposition may reduce capillary density, affect endothelial cells of blood vessels, result in diffusion from blood vessels, or interfere with the perivascular clearance mechanism. Hence, the spatial pattern of the classic ('cored') type of Abeta deposit was studied in the upper laminae (I,II/III) of the superior frontal gyrus in nine cases of sporadic AD (SAD). Sections were immunostained with antibodies against Abeta and with collagen IV to study the relationships between the spatial distribution of the classic deposits and the blood vessel profiles. Both the classic deposits and blood vessel profiles were distributed in clusters. In all cases, there was a positive spatial correlation between the clusters of the classic deposits and the larger diameter (>10 microm) blood vessel profiles and especially the vertically penetrating arterioles. In only 1 case, was there a significant spatial correlation between the clusters of the classic deposits and the smaller diameter (<10 microm) capillaries. There were no negative correlations between the density of Abeta deposits and the smaller diameter capillaries. In 9/11 cases, the clusters of the classic deposits were significantly larger than those of the clusters of the larger blood vessel profiles. In addition, the density of the classic deposits declined as a negative exponential function with distance from a vertically penetrating arteriole. These results suggest that the classic Abeta deposits cluster around the larger blood vessels in the upper laminae of the frontal cortex. This aggregation could result from diffusion of proteins from blood vessels or from overloading the system of perivascular clearance from the brain.
Resumo:
The spatial patterns of the prion protein (PrP) deposits were studied in immunostained sections of areas of the cerebral cortex, hippocampus, dentate gyrus, and the molecular layer of the cerebellum in 11 cases of variant Creutzfeldt-Jakob disease (vCJD). Clustering of PrP deposits, with a regular distribution of the clusters parallel to the tissue boundary, was the most common spatial pattern observed. Two morphological types of PrP deposit were recognised, those consisting of a condensed core (florid deposits) and those deposits lacking a condensed core (non-florid deposits). The florid and non-florid PrP deposits exhibited a different profile of spatial patterns. First, the florid deposits exhibited a regularly distributed pattern of clusters more frequently than the non-florid deposits. Second, the florid deposits formed larger clusters (greater than1,600 µm in diameter) less frequently than the non-florid deposits. In the areas of the cerebral cortex that exhibited a regular distribution of PrP deposit clusters, the cluster size of the deposits approximated that of the groups of cells of the cortico-cortical pathway origin in only 12% of analyses. No significant differences in the frequency of the different types of spatial pattern were observed in different brain regions, or in the cerebral cortex between the upper and lower laminae. It was concluded that the spatial patterns of the PrP deposits in the cerebral cortex in vCJD are unlikely to reflect the degeneration of the cortico-cortical pathways as has been reported in sporadic CJD (sCJD). In addition, different factors could be involved in the development of the deposits with and without a condensed core.
Resumo:
The spatial pattern of the prion protein (PrP) deposits was studied in the cerebral cortex and cerebellum in 10 patients with sporadic Creutzfeldt–Jakob disease (CJD). In all patients the PrP deposits were aggregated into clusters and, in 90% of cortical areas and in 50% of cerebellar sections, the clusters exhibited a regular periodicity parallel to the tissue boundary; a spatial pattern also exhibited by ß-amyloid (Aß) deposits in Alzheimer's disease (AD). In the cerebral cortex, the incidence of regular clustering of the PrP deposits was similar in the upper and lower cortical laminae. The sizes of the PrP clusters in the upper and lower cortex were uncorrelated. No significant differences in mean cluster size of the PrP deposits were observed between brain regions. The size, location and distribution of the PrP deposit clusters suggest that PrP deposition occurs in relation to specific anatomical pathways and supports the hypothesis that prion pathology spreads through the brain via such pathways. In addition, the data suggest that there are similarities in the pathogenesis of extracellular protein deposits in prion disease and in AD.
Resumo:
The association between diffuse-type beta -amyloid (AP) deposits and neuronal cell bodies in Alzheimer's disease (AD) and Down's syndrome (DS) could result from the secretion of AP from clusters of neurons in situ or the diffusion of A beta from cell processes, glial cells or blood vessels. To decide between these hypotheses, spatial pattern analysis was used to study the relationship between the degree of clustering of neuronal cell bodies and the presence of diffuse deposits in the temporal lobe of patients with DS. Significant clustering of neuronal cell bodies was present in 17/24 (71%) of brain areas studied. in addition, in 23/24 (96%) of brain areas, there was a positive correlation between the presence of diffuse deposits and the density of neurons. Hence, the data support the hypothesis that diffuse deposits develop in situ mainly as a result of the secretion of A beta by local clusters of neurons rather than by significant diffusion. Furthermore, the size of a diffuse deposit is likely to be determined by the number of neurons within a cluster which secrete A beta. The number and density of neurons could also be a factor determining the evolution of a diffuse into a mature amyloid deposit.
Resumo:
Similar pathological processes may be involved in the deposition of extracellular proteins in the brains of patients with Creutzfeldt-Jakob disease (CJD) and Alzheimer's disease (AD). Hence, this study compared the spatial patterns of prion protein (PrP) deposits in the cerebral cortex and hippocampus in cases of sporadic CJD with those of β-amyloid (Aβ) deposits in sporadic AD. PrP and Aβ deposits were aggregated into clusters and, in 90% of brain areas in CJD and 57% in AD, the clusters were regularly distributed parallel to the tissue boundary. In a significant proportion of cortical analyses, the mean diameter of the clusters of PrP and Aβ deposits were similar to those of the cells of origin of the cortico-cortical pathways. Aβ deposits in AD were distributed more frequently in larger-sized clusters than PrP deposits in CJD. In addition, in the hippocampus and dentate gyrus, clustering of Aβ deposits was observed in AD but PrP deposits were rare in these regions in CJD. The size, location and distribution of the extracellular protein deposits within the cortex of both disorders was consistent with the degeneration of the cortico-cortical pathways. Furthermore, spread of the pathology along these pathways may be a pathogenic feature common to CJD and AD. © 2001 Elsevier Science Ireland Ltd.
Resumo:
The spatial patterns of the diffuse, primitive, and classic β-amyloid (Aβ) deposits were compared in cortical regions in early-onset familial Alzheimer's disease (EO-FAD) linked to mutations of the amyloid precursor protein APP) or presenilin 1 (PSEN1) genes, late-onset familial AD (LO-FAD), and sporadic AD (SAD). The objective was to determine whether genetic factors influenced the spatial patterns of the Aβ deposits. Aβ deposits were distributed either in clusters which were regularly distributed parallel to the pia mater or in larger, non-regularly distributed clusters. There were no significant differences in spatial pattern of the diffuse deposits between patient groups but mean cluster size of the diffuse deposits was larger in FAD compared with SAD. Primitive Aβ deposits were more frequently distributed in regular clusters and less frequently distributed in large clusters in FAD compared with SAD. Classic Aβ deposits were more frequently distributed in regularly spaced clusters and less frequently distributed in large clusters in LO-FAD compared with EO-FAD. There were no significant differences in the spatial patterns or cluster sizes of Aβ deposits in cases classified according to apolipoprotein E (APOE) genotype. These results suggest (1) greater deposition of Aβ in the form of clusters of diffuse deposits in FAD, (2) a greater proportion of diffuse deposits may be converted to primitive deposits in SAD, (3) classic deposits are more widely distributed in EO-FAD, and (4) the presence of APOE allele ε4 has little effect on the spatial patterns of Aβ deposits.