2 resultados para Physicochemical analysis

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oral liquid formulations are ideal dosage forms for paediatric, geriatric and patient with dysphagia. Dysphagia is prominent among patients suffering from stroke, motor neurone disease, advanced Alzheimer’s and Parkinson’s disease. However oral liquid preparations are particularly difficult to formulate for hydrophobic and unstable drugs. Therefore current methods employed in solving this issue include the use of ‘specials’ or extemporaneous preparations. In order to challenge this, the government has encouraged research into the field of oral liquid formulations, with the EMEA and MHRA publishing list of drugs of interest. The current work investigates strategic formulation development and characterisation of select API’s (captopril, gliclazide, melatonin, L-arginine and lansoprazole), each with unique obstacles to overcome during solubilisation, stabilisation and when developing a palatable dosage from. By preparing a validated calibration protocol for each of the drug candidates, the oral liquid formulations were assessed for stability, according to the ICH guidelines along with thorough physiochemical characterisation. The results showed that pH and polarity of the solvent had the greatest influence on the extent of drug solubilisation, with inclusion of antioxidants and molecular steric hindrance influencing the extent of drug stability. Captopril, a hydrophilic ACE inhibitor (160 mg.mL-1), undergoes dimerisation with another captopril molecule. It was found that with the addition of EDTA and HP-β-CD, the drug molecule was stabilised and prevented from initiating a thiol induced first order free radical oxidation. The cyclodextrin provided further steric hindrance (1:1 molar ratio) resulting in complete reduction of the intensity of sulphur like smell associated with captopril. Palatability is a crucial factor in patient compliance, particularly when developing a dosage form targeted towards paediatrics. L-arginine is extremely bitter in solution (148.7 g.L-1). The addition of tartaric acid into the 100 mg.mL-1 formulation was sufficient to mask the bitterness associated with its guanidium ions. The hydrophobicity of gliclazide (55 mg.L-1) was strategically challenged using a binary system of a co-solvent and surfactant to reduce the polarity of the medium and ultimately increase the solubility of the drug. A second simpler method was developed using pH modification with L-arginine. Melatonin has two major obstacles in formulation: solubility (100 μg.mL-1) and photosensitivity, which were both overcome by lowering the dielectric constant of the medium and by reversibly binding the drug within the cyclodextrin cup (1:1 ratio). The cyclodextrin acts by preventing UV rays from reaching the drug molecule and initiated the degradation pathway. Lansoprazole is an acid labile drug that could only be delivered orally via a delivery vehicle. In oral liquid preparations this involved nanoparticulate vesicles. The extent of drug loading was found to be influenced by the type of polymer, concentration of polymer, and the molecular weight. All of the formulations achieved relatively long shelf-lives with good preservative efficacy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grewia polysaccharide gum, a potential pharmaceutical excipient was extracted from the inner stem bark of Grewia mollis, thereupon drying was achieved by three techniques: air-drying, freeze-drying and spray-drying. Analysis of the monosaccharide composition including 1H and 13C NMR spectroscopic analysis of the polysaccharide gum was carried out. The effect of the drying methods on the physicochemical properties of the gum was evaluated by Fourier transformed infra-red (FT-IR) spectroscopy, solid-state 13C nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis, differential scanning calorimetry and gel permeation chromatography. Monosaccharide sugar analysis revealed that the gum is composed of glucose, rhamnose, galactose, arabinose and xylose as the main neutral sugars. These were supported by the results from 1H and 13C NMR spectroscopic analysis. FT-IR and solid-state NMR results indicated that drying technique has little effect on the structure of the polysaccharide gum but XPS showed that surface chemistry of the gum varied with drying methods. Thermogravimetric analyses showed that oxidation onset varied according to the drying method. The molecular weight was also dependent on the drying technique. For industrial extrapolation, air-drying may be preferable to spray-drying and freeze-drying when relative cost, product stability and powder flow are required, for example in tablet formulation. © 2010 Elsevier Ltd. All rights reserved.