32 resultados para Physicochemical Phenomena

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The assertion about the peculiarly intricate and complex character of social phenomena has, in much of social discourse, a virtually uncontested tradition. A significant part of the premise about the complexity of social phenomena is the conviction that it complicates, perhaps even inhibits the development and application of social scientific knowledge. Our paper explores the origins, the basis and the consequences of this assertion and asks in particular whether the classic complexity assertion still deserves to be invoked in analyses that ask about the production and the utilization of social scientific knowledge in modern society. We refer to one of the most prominent and politically influential social scientific theories, John Maynard Keynes' economic theory as an illustration. We conclude that, the practical value of social scientific knowledge is not necessarily dependent on a faithful, in the sense of complete, representation of (complex) social reality. Practical knowledge is context sensitive if not project bound. Social scientific knowledge that wants to optimize its practicality has to attend and attach itself to elements of practical social situations that can be altered or are actionable by relevant actors. This chapter represents an effort to re-examine the relation between social reality, social scientific knowledge and its practical application. There is a widely accepted view about the potential social utility of social scientific knowledge that invokes the peculiar complexity of social reality as an impediment to good theoretical comprehension and hence to its applicability.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Charge transport and dielectric measurements were carried out on compacted powder and single-crystal samples of bistable RbxMn[Fe(CN)6]y·zH2O in the two valence-tautomeric forms (MnIIFeIII and MnIIIFeII) as a function of temperature (120-350 K) and frequency (10-2-106 Hz). The complex conductivity data reveal universal conductivity behavior and obey the Barton-Nakajima-Namikawa relationship. The charge transport is accompanied by dielectric relaxation that displays the same thermal activation energy as the conductivity. Surprisingly, the activation energy of the conductivity was found very similar in the two valence-tautomeric forms (0.55 eV), and the conductivity change between the two phases is governed mainly by the variation of the preexponential factor in each sample. The phase transition is accompanied by a large thermal hysteresis of the conductivity and the dielectric constant. In the hysteresis region, however, a crossover occurs in the charge transport mechanism at T < 220 K from an Arrhenius-type to a varying activation energy behavior, conferring an unusual “double-loop” shape to the hysteresis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental and theoretical study of the impact behaviour of charged microparticles in a high voltage vacuum gap has been carried out to investigate under controlled conditions the role of low velocity microparticles (ζ 500 ms-1) in initiating electrical breakdown in such gaps. This has involved developing a unique (UHV) low-velocity source of micron-sized charged particles to study the underlying mechanical and electrical aspects of micro-particle impact on a range of target materials e.g. Pb, Ti, C, stainless-steel and mica etc., having atomically clean or oxidised surfaces. Argon-ion etching and electron-beam heating has been used for in-situ surface treatment and ellipsometry for characterising the target surfaces. An associated sphere/plane theoretical model has been developed for detailed analysis of the many complex electrical (in-flight in-field emission, M.I.M. tunnelling and ohmic conduction) and mechanical (impact dynamics, deformation and heating) phenomena that are involved when a microparticle closely approaches and impacts on a plane target. In each instance the influence of parameters such as particle radius, particle/target impact velocity, surface field, surface condition and material has been determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poor water solubility leads to low dissolution rate and consequently, it can limit bioavailability. Solid dispersions, where the drug is dispersed into an inert, hydrophilic polymer matrix can enhance drug dissolution. Solid dispersions were prepared using phenacetin and phenylbutazone as model drugs with polyethylene glycol (PEG) 8000 (carrier), by melt fusion method. Phenacetin and phenylbutazone displayed an increase in the dissolution rate when formulated as solid dispersions as compared with their physical mixture and drug alone counterparts. Characterisation of the solid dispersions was performed using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). DSC studies revealed that drugs were present in the amorphous form within the solid dispersions. FTIR spectra for the solid dispersions of drugs suggested that there was a lack of interaction between PEG 8000 and the drug. However, the physical mixture of phenacetin with PEG 8000 indicated the formation of hydrogen bond between phenacetin and the carrier. Permeability of phenacetin and phenylbutazone was higher for solid dispersions as compared with that of drug alone across Caco-2 cell monolayers. Permeability studies have shown that both phenacetin and phenylbutazone, and their solid dispersions can be categorised as well-absorbed compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behavior of emergency core cooling systems during all types of loss of coolant accidents (LOCA). The insulation debris released near the break during a LOCA incident consists of a mixture of disparate particle population that varies with size, shape, consistency and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb/impinge on the emergency core cooling systems. Open questions of generic interest are the sedimentation of the insulation debris in a water pool, its possible re-suspension and transport in the sump water flow and the particle load on strainers and corresponding pressure drop. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Görlitz, the theoretical modeling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. In the presentation the basic concepts for CFD modeling are described and feasibility studies including the conceptual design of the experiments are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport, and sedimentation becomes more important with regard to reactor safety research for pressurized water reactors and boiling water reactors when considering the long-term behavior of emergency core coolant systems during all types of loss-of-coolant accidents (LOCAs). The insulation debris released near the break during a LOCA incident consists of a mixture of disparate particle populations that varies with size, shape, consistency, and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb/impinge on the emergency core cooling systems. Open questions of generic interest are, for example, the particle load on strainers and corresponding pressure drop, the sedimentation of the insulation debris in a water pool, and its possible resuspension and transport in the sump water flow. A joint research project on such questions is being performed in cooperation with the University of Applied Sciences Zittau/Görlitz. The project deals with the experimental investigation and the development of computational fluid dynamics (CFD) models for the description of particle transport phenomena in coolant flow. While the experiments are performed at the University of Applied Sciences Zittau/Görlitz, the theoretical work is concentrated at Forschungszentrum Dresden-Rossendorf. In the current paper the basic concepts for CFD modeling are described and feasibility studies including the conceptual design of the experiments are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behaviour of emergency core cooling systems during all types of loss of coolant accidents. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Görlitz, the theoretical modelling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. In the current paper the basic concepts for CFD modelling are described and feasibility studies are presented. © Carl Hanser Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis the factors surrounding the permeation of alkali and alkaline earth metal salts through hydrogel membranes are investigated. Although of relevance to aqueous separations in general, it was with their potential application in sensors that this work was particularly concerned. In order to study the effect that the nature of the solute has on the transport process, a single polymer matrix, poly (2-hydroxyethyl methacrylate), was initially studied. The influence of cation variation in the presence of a fixed anion was looked at, followed by the effect of the anion in the presence of a fixed cation. The anion was found to possess the dominant influence and tended to subsume any influence by the cation. This is explained in terms of the structure-making and structure-breaking characteristics of the ions in their solute-water interactions. Analogies in the transport behaviour of the salts are made with the Hofmeister series. The effect of the chemical composition of the polymer backbone on the water structuring in the hydrogel and, consequently, transport through the membrane, was investigated by preparing a series of poly (2-hydroxyethyl methacrylate) copolymer membranes and determining the permeability coefficient of salts with a fixed anion. The results were discussed in terms of the `free-volume' model of permeation and the water structuring of the polymer backbone. The ability of ionophores to selectively modulate the permeation of salts through hydrogel membranes was also examined. The results indicated that a dualsorption model was in operation. Finally, hydrogels were used as membrane overlays on coated wire ion-selective electrodes that employed conventional plasticised-PVC-valinomycin based sensing membranes. The hydrogel overlays were found to affect the access of the analyte but not the underlying electrochemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is concerned with a study of certain phenomena related to the performance and design of distributors in gas fluidized beds with particular regard to flowback of solid particles. The work to be described is divided into two parts. I. In Part one, a review of published material pertaining to distribution plates, including details from the patent specifications, has been prepared. After a chapter on the determination of the incipient fluidizing velocity, the following aspects of multi-orifice distributor plates in gas fluidized beds have been studied: (i) The effect of the distributor on bubble formation related to the way in which even distribution of bubbles on the top surface of the fluidized bed is obtained, e.g. the desirable pressure drop ratio ?PD/?PB for the even distribution of gas across the bed. Ratios of distributor pressure drop ?PD to bed pressure drop at which stable fluidization occurs show reasonable agreement with industrial practice. There is evidence that larger diameter beds tend to be less stable than smaller diameter beds when these are operated with shallow beds. Experiments show that in the presence of the bed the distributor pressure drop is reduced relative to the pressure drop without the bed, and this pressure drop in the former condition is regarded as the appropriate parameter for the design of the distributor. (ii) Experimental measurements of bubble distribution at the surface has been used to indicate maldistribution within the bed. Maldistribution is more likely at low gas flow rates and with distributors having large fractional free area characteristics (i.e. with distributors having low pressure drops). Bubble sizes obtained from this study, as well as those of others, have been successfully correlated. The correlation produced implies the existence of a bubble at the surface of an orifice and its growth by the addition of excess gas from the fluidized bed. (iii) For a given solid system, the amount of defluidized particles stagnating on the distributor plate is influenced by the orifice spacing, bed diameter and gas flow rate, but independent of the initial bed height and the way the orifices are arranged on the distributor plate. II. In Part two, solids flowback through single and multi-orifice distributors in two-dimensional and cylindrical beds of solids fluidized with air has been investigated. Distributors equipped with long cylindrical nozzles have also been included in the study. An equation for the prediction of free flowback of solids through multi-orifice distributors has been derived. Under fluidized conditions two regimes of flowback have been differentiated, namely Jumping and weeping. Data in the weeping regime have been successfully correlated. The limiting gas velocity through the distributor orifices at which flowback is completely excluded is found to be indepnndent of bed height, but a function of distributor design and physical properties of gas and solid used. A criterion for the prediction of this velocity has been established. The decisive advantage of increasing the distributor thickness or using nozzles to minimize solids flowback in fluidized beds has been observed and the opportunity taken to explore this poorly studied subject area. It has been noted, probably for the first time, that with long nozzles, there exists a critical nozzle length above which uncontrollable downflow of solids occurs. A theoretical model for predicting the critical length of a bundle of nozzles in terms of gas velocity through the nozzles has been set up. Theoretical calculations compared favourably with experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behavior of emergency core cooling systems during all types of loss of coolant accidents (LOCA). The insulation debris released near the break during a LOCA incident consists of a mixture of disparate particle population that varies with size, shape, consistency and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb/impinge on the emergency core cooling systems. Open questions of generic interest are the sedimentation of the insulation debris in a water pool, its possible re-suspension and transport in the sump water flow and the particle load on strainers and corresponding pressure drop. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Görlitz, the theoretical modeling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. In the current paper the basic concepts for CFD-modeling are described and feasibility studies including the conceptual design of the experiments are presented. © 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to gain a better understanding of the physiochemical factors which affect the formulation of suspension inhalation aerosols. This has been attempted by applying the principles of colloid science to aerosol formulation. Both a drug system and a model colloid system have been used. The adsorption of six nonionic and cationic surfactants onto Spherisorb has been investigated. The results were analysed by calculating the area occupied by one adsorbed molecule at the surface and by comparing these values for each surfactant. The amount of each surfactant adsorbed was correlated with the number of sites on that surfactant molecule which could interact with the surface. The stability of suspensions, produced by both the model colloid Spherisorb, and by the drug isoprenaline sulphate, after adsorption of the surfactants, has been assessed by measuring settling times and rising times. The most stable suspensions were found to be those which had the greatest amounts of long chain fatty acid surfactant adsorbed on their surface. A comparison was made between the effective stabilising properties of Span 85 and oleic acid on various drug suspensions. It was found that Span 85 gave the most stable suspensions. Inhalation aerosol suspensions of isoprenaline sulphate were manufactured using the same surfactants used in the adsorption and suspension stability studies and were analysed by measuring the particle size distributions of the suspension and the emitted doses. The results were found to correlate with the adsorption and suspension stability studies and it was concluded that a deflocculated suspension was preferable to a flocculated suspension in inhalation aerosols provided that the drug density was less than the propellant density. The application of this work to preformulation studies was also discussed.