22 resultados para Physical and chemical traits of soil

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS: To investigate the influence of chemical and physical factors on the rate and extent of germination of Clostridium difficile spores. METHODS AND RESULTS: Germination of C. difficile spores following exposure to chemical and physical germinants was measured by loss of either heat or ethanol resistance. Sodium taurocholate and chenodeoxycholate initiated germination together with thioglycollate medium at concentrations of 0.1-100 mmol l(-1) and 10-100 mmol l(-1) respectively. Glycine (0.2% w/v) was a co-factor required for germination with sodium taurocholate. There was no significant difference in the rate of germination of C. difficile spores in aerobic and anaerobic conditions (P > 0.05) however, the initial rate of germination was significantly increased at 37 degrees C compared to 20 degrees C (P < 0.05). The optimum pH range for germination was 6.5-7.5, with a decreased rate and extent of germination occurring at pH 5.5 and 8.5. CONCLUSIONS: This study demonstrates that sodium taurocholate and chenodeoxycholate initiate germination of C. difficile spores and is concentration dependant. Temperature and pH influence the rate and extent of germination. SIGNIFICANCE AND IMPACT OF THE STUDY: This manuscript enhances the knowledge of the factors influencing the germination of C. difficile spores. This may be applied to the development of potential novel strategies for the prevention of C. difficile infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological soil crusts (BSCs) are formed by aggregates of soil particles and communities of microbial organisms and are common in all drylands. The role of BSCs on infiltration remains uncertain due to the lack of data on their role in affecting soil physical properties such as porosity and structure. Quantitative assessment of these properties is primarily hindered by the fragile nature of the crusts. Here we show how the use of a combination of non-destructive imaging X-ray microtomography (XMT) and Lattice Boltzmann method (LBM) enables quantification of key soil physical parameters and the modeling of water flow through BSCs samples from Kalahari Sands, Botswana. We quantify porosity and flow changes as a result of mechanical disturbance of such a fragile cyanobacteria-dominated crust. Results show significant variations in porosity between different types of crusts and how they affect the flow and that disturbance of a cyanobacteria-dominated crust results in the breakdown of larger pore spaces and reduces flow rates through the surface layer. We conclude that the XMT–LBM approach is well suited for study of fragile surface crust samples where physical and hydraulic properties cannot be easily quantified using conventional methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The past decade has seen an influx of speciality plant seed oils arriving into the market place. The need to characterise these oils has become an important aspect of the oil industry. The characterisation of the oils allows for the physical and chemical properties of the oil to be determined. Speciality oils were characterised based on their lipid and fatty acid profiles and categorised as monounsaturated rich (oleic acid as the major acyl components e.g. Moringa and Marula oil), linoleic acid rich (Grape seed and Evening Primrose oil) or linolenic acid rich (Flaxseed and Kiwi oil). The quality of the oils was evaluated by determining the free fatty acid content, the peroxide value (that measures initial oxidation) and p-anisidine values (that determines secondary oxidation products containing the carbonyl function). A reference database was constructed for the oils in order to compare batches of oils for their overall quality including oxidative stability. For some of the speciality oils, the stereochemistry of the triacylglycerols was determined. Calophyllum, Coffee, Poppy and Sea Buckthorn oils stereochemistry was determined. The oils were enriched with saturated and/or a monounsaturated fatty acids at position sn-1 and sn-3. The sn-2 position of the four oils was esterified with a polyunsaturated and/or a monounsaturated fatty acid indicating that they follow a typical acylation pathway and no novel acylation activity was evident from these studies (e.g enrichment of saturates at the sn-2 position). The oxidative stability of the oils was evaluated at 18oC and 60oC and the effect of adding a-tocopherol at commercially used level i.e 750ppm was assessed. The addition of 750ppm of a-tocopherol at 18oC increased the oxidative stability of Brown flax, Moringa, Wheat germ and Yangu oils. At 60oC Brown Flax, Manketti and Pomegranate oil polymerised after 48 hours. The addition of 750ppm a-tocopherol delayed the onset of polymerisation by up to 48 hours in Brown Flax seed oil. Pomegranate oil showed a high resistance to oxidation, and was blended into other speciality oils at 1%. Pomegranate oil increased the oxidative stability of Yangu oil at 18oC. The addition of Pomegranate oil to Wheat germ oil at 60oC, decreased the peroxide content by 10%. In Manketti and Brown Flaxseed oil at elevated temperatures, Pomegranate oil delayed the onset of polymerisation. Preliminary studies of Pomegranate oil blending to Moringa and Borage oil showed it to be more effective than a-tocopherol for certain oils. The antioxidant effects observed following the addition of Pomegranate oil may be due to its conjugated linolenic acid fatty acid, punicic acid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extent to which the surface parameters of Progressive Addition Lenses (PALs) affect successful patient tolerance was investigated. Several optico-physical evaluation techniques were employed, including a newly constructed surface reflection device which was shown to be of value for assessing semi-finished PAL blanks. Detailed physical analysis was undertaken using a computer-controlled focimeter and from these data, iso-cylindrical and mean spherical plots were produced for each PAL studied. Base curve power was shown to have little impact upon the distribution of PAL astigmatism. A power increase in reading addition primarily caused a lengthening and narrowing of the lens progression channel. Empirical measurements also indicated a marginal steepening of the progression power gradient with an increase in reading addition power. A sample of the PAL wearing population were studied using patient records and questionnaire analysis (90% were returned). This subjective analysis revealed the reading portion to be the most troublesome lens zone and showed that patients with high astigmatism (> 2.00D) adapt more readily to PALs than those with spherical or low cylindrical (2.00D) corrections. The psychophysical features of PALs were then investigated. Both grafting visual acuity (VA) and contrast sensitivity (CS) were shown to be reduced with an increase in eccentricity from the central umbilical line. Two sample populations (N= 20) of successful and unsuccessful PAL wearers were assessed for differences in their visual performance and their adaptation to optically induced distortion. The possibility of dispensing errors being the cause of poor patient tolerance amongst the unsuccessful wearer group was investigated and discounted. The contrast sensitivity of the successful group was significantly greater than that of the unsuccessful group. No differences in adaptation to or detection of curvature distortion were evinced between these presbyopic groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Renewable non-edible plant oils such as jatropha and karanj have potential to substitute fossil diesel fuels in CI engines. A multi-cylinder water cooled IDI type CI engine has been tested with jatropha and karanj oils and comparisons made against fossil diesel. The physical and chemical properties of the three fuels were measured to investigate the suitability of jatropha and karanj oils as fuels for CI engines. The engine cooling water circuit and fuel supply systems were modified such that hot jacket water preheated the neat plant oil prior to injection. Between jatropha and karanj there was little difference in the performance, emission and combustion results. Compared to fossil diesel, the brake specific fuel consumption on volume basis was around 3% higher for the plant oils and the brake thermal efficiency was almost similar. Jatropha and karanj operation resulted in higher CO 2 and NO x emissions by 7% and 8% respectively, as compared to diesel. The cylinder gas pressure diagram showed stable engine operation with both plant oils. At full load, the plant oils gave around 3% higher peak cylinder pressure than fossil diesel. With the plant oils, cumulative heat release was smaller at low load and almost similar at full load, compared to diesel. At full load, the plant oils exhibited 5% shorter combustion duration. The study concludes that the IDI type CI engine can be efficiently operated with neat jatropha (or karanj) oil preheated by jacket water, after small modifications of the engine cooling and fuel supply circuits. © 2012 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

De-inking sludge can be converted into useful forms of energy to provide economic and environmental benefits. In this study, pyrolysis oil produced from de-inking sludge through an intermediate pyrolysis technique was blended with biodiesel derived from waste cooking oil, and tested in a multi-cylinder indirect injection type CI engine. The physical and chemical properties of pyrolysis oil and its blends (20 and 30 vol.%) were measured and compared with those of fossil diesel and pure biodiesel (B100). Full engine power was achieved with both blends, and very little difference in engine performance and emission results were observed between 20% and 30% blends. At full engine load, the brake specific fuel consumption on a volume basis was around 6% higher for the blends when compared to fossil diesel. The brake thermal efficiencies were about 3-6% lower than biodiesel and were similar to fossil diesel. Exhaust gas emissions of the blends contained 4% higher CO2 and 6-12% lower NOx, as compared to fossil diesel. At full load, CO emissions of the blends were decreased by 5-10 times. The cylinder gas pressure diagram showed stable engine operation with the 20% blend, but indicated minor knocking with 30% blend. Peak cylinder pressure of the 30% blend was about 5-6% higher compared to fossil diesel. At full load, the peak burn rate of combustion from the 30% blend was about 26% and 12% higher than fossil diesel and biodiesel respectively. In comparison to fossil diesel the combustion duration was decreased for both blends; for 30% blend at full load, the duration was almost 12% lower. The study concludes that up to 20% blend of de-inking sludge pyrolysis oil with biodiesel can be used in an indirect injection CI engine without adding any ignition additives or surfactants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Torrefaction experiments were carried out for three typical South African biomass samples (softwood chips, hardwood chips and sweet sorghum bagasse) to a weight loss of 30wt.%. During torrefaction, moisture, non-structural carbohydrates and hemicelluloses were reduced, resulting in a structurally modified torrefaction product. There was a reduction in the average crystalline diameter (La) (XRD), an increase in the aromatic fraction and a reduction in aliphatics (substituted and unsubstituted) (CPMAS 13C NMR). The decrease in the aliphatic components of the lignocellulosic material under the torrefaction conditions also resulted in a slight ordering of the carbon lattice. The degradation of hemicelluloses and non-structural carbohydrates increased the inclusive surface area of sweet sorghum bagasse, while it did not change significantly for the woody biomasses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to investigate the adhesive properties of an in-house amino-propyltrimethoxysilane-methylenebisacrylamide (APTMS-MBA) siloxane system and compare them with a commercially available adhesive, n-butyl cyanoacrylate (nBCA). The ability of the material to perform as a soft tissue adhesive was established by measuring the physical (bond strength, curing time) and biological (cytotoxicity) properties of the adhesives on cartilage. Complementary physical techniques, X-ray photoelectron spectroscopy, Raman and infrared imaging, enabled the mode of action of the adhesive to the cartilage surface to be determined. Adhesion strength to cartilage was measured using a simple butt joint test after storage in phosphate-buffered saline solution at 37°C for periods up to 1 month. The adhesives were also characterised using two in vitro biological techniques. A live/dead stain assay enabled a measure of the viability of chondrocytes attached to the two adhesives to be made. A water-soluble tetrazolium assay was carried out using two different cell types, human dermal fibroblasts and ovine meniscal chondrocytes, in order to measure material cytotoxicity as a function of both supernatant concentration and time. IR imaging of the surface of cartilage treated with APTMS-MBA siloxane adhesive indicated that the adhesive penetrated the tissue surface marginally compared to nBCA which showed a greater depth of penetration. The curing time and adhesion strength values for APTMS-MBA siloxane and nBCA adhesives were measured to be 60 s/0.23 MPa and 38 min/0.62 MPa, respectively. These materials were found to be significantly stronger than either commercially available fibrin (0.02 MPa) or gelatin resorcinol formaldehyde (GRF) adhesives (0.1 MPa) (P <0.01). Cell culture experiments revealed that APTMS-MBA siloxane adhesive induced 2% cell death compared to 95% for the nBCA adhesive, which extended to a depth of approximately 100-150 μm into the cartilage surface. The WST-1 assay demonstrated that APTMS-MBA siloxane was significantly less cytotoxic than nBCA adhesive as an undiluted conditioned supernatant (P <0.001). These results suggest that the APTMS-MBA siloxane may be a useful adhesive for medical applications. © VSP 2005.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Damaged, aged or unwanted cells are removed from the body by an active process known as apoptosis. This highly orchestrated programme results in the exposure of 'flags' at the dying cell surface and the release of attractive signals to recruit phagocytes. Together these changes ensure efficient phagocytic removal of dying cells and prevention of inflammatory and autoimmune disorders. Extracellular vesicles (EV) are released from a variety of cells (both viable and apoptotic) and they serve as a novel means of intercellular communication. They range in size: 70-100nm ('exosomes') through 100-1000nm ('microparticles') to large vesicles released from dying cells ('apoptotic bodies'). Release of apoptotic cell-derived extracellular vesicles (acdEV) of less than 1000nm is an important mechanism by which phagocytes are attracted to sites of cell death. Using a variety of approaches we characterize the release, physical characteristics and function of acdEV. Using fluorescence microscopy we demonstrate release of ICAM-3 on acdEV from dying leukocytes and, through the use of resistive pulse technology (qNano, IZON Science), we accurately size and quantitate acdEV release. The function of acdEV is revealed through the use of both horizontal chemotaxis assays (Dunn chambers) and vertical transwell migration assays (Cell-IQ, CM Technologies). These assays reveal potent chemoattractive capacity of acdEV and associated ICAM-3. Additionally we demonstrate an additional novel function of acdEV as anti-inflammatory immune-modulators. These data support an integrated approach to the physical and functional analyses of EV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Waste cooking oils can be converted into fuels to provide economical and environmental benefits. One option is to use such fuels in stationary engines for electricity generation, co-generation or tri-generation application. In this study, biodiesel derived from waste cooking oil was tested in an indirect injection type 3-cylinder Lister Petter biodiesel engine. We compared the combustion and emission characteristics with that of fossil diesel operation. The physical and chemical properties of pure biodiesel (B100) and its blends (20% and 60% vol.) were measured and compared with those of diesel. With pure biodiesel fuel, full engine power was achieved and the cylinder gas pressure diagram showed stable operation. At full load, peak cylinder pressure of B100 operation was almost similar to diesel and peak burn rate of combustion was about 13% higher than diesel. For biodiesel operation, occurrences of peak burn rates were delayed compared to diesel. Fuel line injection pressure was increased by 8.5-14.5% at all loads. In comparison to diesel, the start of combustion was delayed and 90% combustion occurred earlier. At full load, the total combustion duration of B100 operation was almost 16% lower than diesel. Biodiesel exhaust gas emissions contained 3% higher CO2 and 4% lower NOx, as compared to diesel. CO emissions were similar at low load condition, but were decreased by 15 times at full load. Oxygen emission decreased by around 1.5%. Exhaust gas temperatures were almost similar for both biodiesel and diesel operation. At full engine load, the brake specific fuel consumption (on a volume basis) and brake thermal efficiency were respectively about 2.5% and 5% higher compared to diesel. Full engine power was achieved with both blends, and little difference in engine performance and emission results were observed between 20% and 60% blends. The study concludes that biodiesel derived from waste cooking oil gave better efficiency and lower NOx emissions than standard diesel. Copyright © 2012 SAE International.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The following thesis describes the computer modelling of radio frequency capacitively coupled methane/hydrogen plasmas and the consequences for the reactive ion etching of (100) GaAs surfaces. In addition a range of etching experiments was undertaken over a matrix of pressure, power and methane concentration. The resulting surfaces were investigated using X-ray photoelectron spectroscopy and the results were discussed in terms of physical and chemical models of particle/surface interactions in addition to the predictions for energies, angles and relative fluxes to the substrate of the various plasma species. The model consisted of a Monte Carlo code which followed electrons and ions through the plasma and sheath potentials whilst taking account of collisions with background neutral gas molecules. The ionisation profile output from the electron module was used as input for the ionic module. Momentum scattering interactions of ions with gas molecules were investigated via different models and compared against results given by quantum mechanical code. The interactions were treated as central potential scattering events and the resulting neutral cascades were followed. The resulting predictions for ion energies at the cathode compared well to experimental ion energy distributions and this verified the particular form of the electrical potentials used and their applicability in the particular geometry plasma cell used in the etching experiments. The final code was used to investigate the effect of external plasma parameters on the mass distribution, energy and angles of all species impingent on the electrodes. Comparisons of electron energies in the plasma also agreed favourably with measurements made using a Langmuir electric probe. The surface analysis showed the surfaces all to be depleted in arsenic due to its preferential removal and the resultant Ga:As ratio in the surface was found to be directly linked to the etch rate. The etch rate was determined by the methane flux which was predicted by the code.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary objective of this research was to examine the concepts of the chemical modification of polymer blends by reactive processing using interlinking agents (multi-functional, activated vinyl compounds; trimethylolpropane triacrylates {TRIS} and divinylbenzene {DVD}) to target in-situ interpolymer formation between immiscible polymers in PS/EPDM blends via peroxide-initiated free radical reactions during melt mixing. From a comprehensive survey of previous studies of compatibility enhancement in polystyrene blends, it was recognised that reactive processing offers opportunities for technological success that have not yet been fully realised; learning from this study is expected to assist in the development and application of this potential. In an experimental-scale operation for the simultaneous melt blending and reactive processing of both polymers, involving manual injection of precise reactive agent/free radical initiator mixtures directly into molten polymer within an internal mixer, torque changes were distinct, quantifiable and rationalised by ongoing physical and chemical effects. EPDM content of PS/EPDM blends was the prime determinant of torque increases on addition of TRIS, itself liable to self-polymerisation at high additions, with little indication of PS reaction in initial reactively processed blends with TRIS, though blend compatibility, from visual assessment of morphology by SEM, was nevertheless improved. Suitable operating windows were defined for the optimisation of reactive blending, for use once routes to encourage PS reaction could be identified. The effectiveness of PS modification by reactive processing with interlinking agents was increased by the selection of process conditions to target specific reaction routes, assessed by spectroscopy (FT-IR and NMR) and thermal analysis (DSC) coupled dichloromethane extraction and fractionation of PS. Initiator concentration was crucial in balancing desired PS modification and interlinking agent self-polymerisation, most particularly with TRIS. Pre-addition of initiator to PS was beneficial in the enhancement of TRIS binding to PS and minimisation of modifier polymerisation; believed to arise from direct formation of polystyryl radicals for addition to active unsaturation in TRIS. DVB was found to be a "compatible" modifier for PS, but its efficacy was not quantified. Application of routes for PS reaction in PS/EPDM blends was successful for in-situ formation of interpolymer (shown by sequential solvent extraction combined with FT-IR and DSC analysis); the predominant outcome depending on the degree of reaction of each component, with optimum "between-phase" interpolymer formed under conditions selected for equalisation of differing component reactivities and avoidance of competitive processes. This was achieved for combined addition of TRIS+DVB at optimum initiator concentrations with initiator pre-addition to PS. Improvements in blend compatibility (by tensiles, SEM and thermal analysis) were shown in all cases with significant interpolymer formation, though physical benefits were not; morphology and other reactive effects were also important factors. Interpolymer from specific "between-phase" reaction of blend components and interlinking agent was vital for the realisation of positive performance on compatibilisation by the chemical modification of polymer blends by reactive processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter considers various aspects of the influence of the environment on the growth of foliose lichens and its significance in determining the ecology of individual species. Radial growth (RaG) and growth in mass of foliose lichens is influenced by climate and microclimate and also by substratum factors such as rock and bark texture, substrate chemistry, and nutrient enrichment. Seasonal fluctuations in growth, as measured by radial growth rate (RaGR) per month, often correlate best with average or total rainfall, the number of rain days, or rainfall in a specific season. Temperature has also been identified to be an important climatic factor influencing growth in some studies. Interactions between microclimatic factors and especially light intensity, temperature, and moisture status are important in determining differences in growth in relation to aspect and slope of the substratum. The physical and chemical nature of the substratum has a profound influence on the growth of foliose lichens. Hence, the effects of texture, porosity, rate of drying, and the physical changes of the substratum on growth are likely to influence lichen distributions. Bird droppings may influence growth and survival by smothering the thalli, altering the pH, or adding inhibitory and stimulatory compounds. Nitrogen and phosphate availability may also influence growth. Chemical factors also have an important influence on lichens of maritime rocks, the effect of salinity and calcium ions being of particular importance. Effects of environmental factors on growth influence the competitive ability of a lichen and ultimately its ecology and distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radial growth and growth in mass of lichens is influenced by climatic and microclimatic factors and also by substratum factors such as rock and bark texture, chemistry, and nutrient enrichment. Seasonal fluctuations in growth, as measured by radial growth rate (RaGR) per month, often correlate best with average or total rainfall, the number of rain days, or rainfall in a specific season. Temperature is also considered to be an important climatic factor in some studies. Interactions between microclimatic factors and especially light intensity, temperature, and moisture are the most important in determining local annual growth rates. The physical and chemical nature of the substratum has a profound influence on the growth of foliose lichens. Hence, the effects of texture, porosity, rate of drying, and the physical changes of the substratum on growth are likely to influence lichen distributions. Bird droppings may influence growth and survival by smothering the thalli, altering the pH, or adding inhibitory and stimulatory compounds. Nitrogen and phosphate availability may also influence growth. Chemical factors may also have an important influence on lichens of maritime rocks, the effect of salinity and calcium ions being of particular importance. Zinc, copper, and mercury may also be important in lichen growth as they have been shown to affect the chlorophyll content of lichen algae. Effects of environmental factors on growth influence the competitive ability of lichens thus influencing their ecology and distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biofuels derived from industry waste have potential to substitute fossil fuels (Diesel and Gasoline) in internal combustion (IC) engines. Use of waste streams as fuels would help to reduce considerably life-cycle greenhouse gas emissions and minimise waste processing costs. In this study an investigation into the fuel properties of two waste derived biofuels were carried out, they are: (i) Glidfuel (GF) biofuel - a waste stream from paper industry, and (ii) Palm Oil Mill Effluent (POME) biodiesel - biodiesel produced from palm oil industry effluent through various treatment and transesterification process. GF and POME was mixed together at various proportions and separately with fossil diesel (FD) to assess the miscibility and various physical and chemical properties of the blends. Fuel properties such as kinematic viscosity, higher heating value, water content, acid number, density, flash point temperature, CHNO content, sulphur content, ash content, oxidation stability, cetane number and copper corrosion ratings of all the fuels were measured. The properties of GF, POME and various blends were compared with the corresponding properties of the standard FD. Significance of the fuel properties and their expected effects on combustion and exhaust emission characteristics of the IC engine were discussed. Results showed that most properties of both GF and POME biodiesel were comparable to FD. Both GF and POME were miscible with each other, and also separately with the FD. Flash point temperatures of GF and POME biodiesel were 40.7°C and 158.7°C respectively. The flash point temperature of GF was about 36% lower than corresponding FD. The water content in GF and FD were 0.74 (% wt) and 0.01 (% wt) respectively. Acidity values and corrosion ratings of both GF and POME biodiesel were low compared to corresponding value for FD. The study concluded that optimum GF-POME biofuel blends can substitute fossil diesel use in IC engines.