4 resultados para Physical Testing
em Aston University Research Archive
Resumo:
Design verification in the digital domain, using model-based principles, is a key research objective to address the industrial requirement for reduced physical testing and prototyping. For complex assemblies, the verification of design and the associated production methods is currently fragmented, prolonged and sub-optimal, as it uses digital and physical verification stages that are deployed in a sequential manner using multiple systems. This paper describes a novel, hybrid design verification methodology that integrates model-based variability analysis with measurement data of assemblies, in order to reduce simulation uncertainty and allow early design verification from the perspective of satisfying key assembly criteria.
Resumo:
The development of more realistic constitutive models for granular media, such as sand, requires ingredients which take into account the internal micro-mechanical response to deformation. Unfortunately, at present, very little is known about these mechanisms and therefore it is instructive to find out more about the internal nature of granular samples by conducting suitable tests. In contrast to physical testing the method of investigation used in this study employs the Distinct Element Method. This is a computer based, iterative, time-dependent technique that allows the deformation of granular assemblies to be numerically simulated. By making assumptions regarding contact stiffnesses each individual contact force can be measured and by resolution particle centroid forces can be calculated. Then by dividing particle forces by their respective mass, particle centroid velocities and displacements are obtained by numerical integration. The Distinct Element Method is incorporated into a computer program 'Ball'. This program is effectively a numerical apparatus which forms a logical housing for this method and allows data input and output, and also provides testing control. By using this numerical apparatus tests have been carried out on disc assemblies and many new interesting observations regarding the micromechanical behaviour are revealed. In order to relate the observed microscopic mechanisms of deformation to the flow of the granular system two separate approaches have been used. Firstly a constitutive model has been developed which describes the yield function, flow rule and translation rule for regular assemblies of spheres and discs when subjected to coaxial deformation. Secondly statistical analyses have been carried out using data which was extracted from the simulation tests. These analyses define and quantify granular structure and then show how the force and velocity distributions use the structure to produce the corresponding stress and strain-rate tensors.
Resumo:
The aim of the present study was to establish if patients with major depression (MD) exhibit a memory bias for sad faces, relative to happy and neutral, when the affective element of the faces is not explicitly processed at encoding. To this end, 16 psychiatric out-patients with MD and 18 healthy, never-depressed controls (HC) were presented with a series of emotional faces and were required to identify the gender of the individuals featured in the photographs. Participants were subsequently given a recognition memory test for these faces. At encoding, patients with MD exhibited a non-significant tendency towards slower gender identification (GI) times, relative to HC, for happy faces. However, the GI times of the two groups did not differ for sad or neutral faces. At memory testing, patients with MD did not exhibit the expected memory bias for sad faces. Similarly, HC did not demonstrate enhanced memory for happy faces. Overall, patients with MD were impaired in their memory for the faces relative to the HC. The current findings are consistent with the proposal that mood-congruent memory biases are contingent upon explicit processing of the emotional element of the to-be-remembered material at encoding.
Resumo:
Background: Self-testing technology allows people to test themselves for chlamydia without professional support. This may result in reassurance and wider access to chlamydia testing, but anxiety could occur on receipt of positive results. This study aimed to identify factors important in understanding self-testing for chlamydia outside formal screening contexts, to explore the potential impacts of self-testing on individuals, and to identify theoretical constructs to form a Framework for future research and intervention development. Methods: Eighteen university students participated in semi-structured interviews; eleven had self-tested for chlamydia. Data were analysed thematically using a Framework approach. Results: Perceived benefits of self-testing included its being convenient, anonymous and not requiring physical examination. There was concern about test accuracy and some participants lacked confidence in using vulvo-vaginal swabs. While some participants expressed concern about the absence of professional support, all said they would seek help on receiving a positive result. Factors identified in Protection Motivation Theory and the Theory of Planned Behaviour, such as response efficacy and self-efficacy, were found to be highly salient to participants in thinking about self-testing. Conclusions: These exploratory findings suggest that self-testing independently of formal health care systems may no more negatively impact people than being tested by health care professionals. Participants’ perceptions about self-testing behaviour were consistent with psychological theories. Findings suggest that interventions which increase confidence in using self-tests and that provide reassurance of test accuracy may increase self-test intentions.