4 resultados para Physical Chemistry problems advanced gas thermodynamics

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study explored whether physical health problems are related to psychotic symptoms independently of a mental disorder diagnosis. A total of 224,254 subjects recruited for the World Health Organization World Health Survey were subdivided into those with both a lifetime diagnosis of psychosis and at least one psychotic symptom in the 12 months prior to the evaluation, those with at least one psychotic symptom in the past 12 months but no lifetime diagnosis of psychosis, and those without psychotic symptoms in the past 12 months and without a lifetime diagnosis of psychosis. The three groups were compared for the presence of medical conditions, health problems, and access to health care. Medical conditions and health problems (angina, asthma, arthritis, tuberculosis, vision or hearing problems, mouth/teeth problems, alcohol consumption, smoking, and accidents), medication consumption, and hospital admissions (but not regular health care visits) were more frequent in individuals with psychotic symptoms but no psychosis diagnosis, compared to those with no symptoms and no diagnosis. The number of medical conditions increased with the number of psychotic symptoms. Given the sample analyzed, this trend seems to be independent from the socio-economic development of the country or the specific health care system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The catalytic destruction of 1,1,1-trichloroethane (TCA) over model sulfated Pt(111) surfaces has been investigated by fast X-ray photoelectron spectroscopy and mass spectrometry. TCA adsorbs molecularly over SO4 precovered Pt(111) at 100 K, with a saturation coverage of 0.4 monolayer (ML) comparable to that on the bare surface. Surface crowding perturbs both TCA and SO4 species within the mixed adlayer, evidenced by strong, coverage-dependent C 1s and Cl and S 2p core-level shifts. TCA undergoes complete dechlorination above 170 K, accompanied by C−C bond cleavage to form surface CH3, CO, and Cl moieties. These in turn react between 170 and 350 K to evolve gaseous CO2, C2H6, and H2O. Subsequent CH3 dehydrogenation and combustion occurs between 350 and 450 K, again liberating CO2 and water. Combustion is accompanied by SO4 reduction, with the coincident evolution of gas phase SO2 and CO2 suggesting the formation of a CO−SOx surface complex. Reactively formed HCl desorbs in a single state at 400 K. Only trace (<0.06 ML) residual atomic carbon and chlorine remain on the surface by 500 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we report a facile polymeric citrate strategy for the synthesis of Cr,La-codoped SrTiO3 nanoparticles. The synthesized samples were well characterized by various analytical techniques. The UV-vis DRS studies reveal that the absorption edge shifts towards the visible light region after doping with Cr, which is highly beneficial for absorbing the visible light in the solar spectrum. More attractively, codoping with La exhibits greatly enhanced photocatalytic activity for the degradation of Rhodamine B under sunlight irradiation. The optimum photocatalytic activity at 1 atom% of Cr,La-codoped SrTiO3 nanoparticles is almost 6 times higher than that of pure SrTiO3 nanoparticles and 3 times higher than that of Cr-doped SrTiO3 nanoparticles. The high photocatalytic performance in the present photocatalytic system is due to codoping with La, which acts as a most effective donor for stabilizing Cr3+ in Cr,La-codoped SrTiO3 nanoparticles. More importantly, the synthesized photocatalysts possess high reusability. A proposed mechanism for the enhanced photocatalytic activity of Cr,La-codoped SrTiO3 nanoparticles was also investigated by trapping experiments. Therefore, our results not only demonstrate the highly efficient visible light photocatalytic activity of the Cr,La-codoped SrTiO3 photocatalyst, but also enlighten the codoping strategy in the design and development of advanced photocatalytic materials for energy and environmental applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-organization of organic molecules with carbon nanomaterials leads to formation of functionalized molecular nano-complexes with advanced features. We present a study of physical and chemical properties of carbon nanotube-surfactant-indocarbocyanine dye (astraphloxin) in water focusing on aggregation of the dye and resonant energy transfer from the dye to the nanotubes. Self-assembly of astraphloxin is evidenced in absorbance and photoluminescence depending dramatically on the concentrations of both the dye and surfactant in the mixtures. We observed an appearance of new photoluminescence peaks in visible range from the dye aggregates. The aggregates characterized with red shifted photoluminescence peaks at 595, 635 and 675 nm are formed mainly due to the presence of surfactant at the premicellar concentration. The energy transfer from the dye to the nanotubes amplifying near-infrared photoluminescence from the nanotubes is not affected by the aggregation of astraphloxin molecules providing important knowledge for further development of advanced molecular nano-complexes. The aggregation with the turned-on peaks and the energy transfer with amplified photoluminescence create powerful tools of visualization and/or detection of the nanotubes in visible and near-infrared spectral range, respectively, boosting its possible applications in sensors, energy generation/storage, and healthcare.