2 resultados para Phylogenetic Analysis
em Aston University Research Archive
Resumo:
The isolation of spirochetes from severe ovine foot disease has been reported recently by our research group. In this study we describe the preliminary classification of this spirochete based on nucleotide sequence analysis of the PCR-amplified 16S rRNA gene. Phylogenetic analysis of this sequence in comparison with other previously reported 16S rRNA gene sequences showed that the spirochete belonged to the treponemal phylotype Treponema vincentii which has been associated with bovine digital dermatitis and human periodontal disease. Further work is required to define the common virulence determinants of these closely related treponemes in the aetiology of these tissue destructive diseases.
Resumo:
SNARE proteins have been classified as vesicular (v)- and target (t)-SNAREs and play a central role in the various membrane interactions in eukaryotic cells. Based on the Paramecium genome project, we have identified a multigene family of at least 26 members encoding the t-SNARE syntaxin (PtSyx) that can be grouped into 15 subfamilies. Paramecium syntaxins match the classical build-up of syntaxins, being 'tail-anchored' membrane proteins with an N-terminal cytoplasmic domain and a membrane-bound single C-terminal hydrophobic domain. The membrane anchor is preceded by a conserved SNARE domain of approximately 60 amino acids that is supposed to participate in SNARE complex assembly. In a phylogenetic analysis, most of the Paramecium syntaxin genes were found to cluster in groups together with those from other organisms in a pathway-specific manner, allowing an assignment to different compartments in a homology-dependent way. However, some of them seem to have no counterparts in metazoans. In another approach, we fused one representative member of each of the syntaxin isoforms to green fluorescent protein and assessed the in vivo localization, which was further supported by immunolocalization of some syntaxins. This allowed us to assign syntaxins to all important trafficking pathways in Paramecium.