3 resultados para Photoperiod Chamber
em Aston University Research Archive
Resumo:
The importance of endogenous rhythms in the photoperiodic control of the annual reproduction cycle in female rainbow trout was investigated. The effect of photoperiod regimes on the different stages of maturation was assessed by recording the timing of ovulation and from quantifying associated changes in serum oestradiol-17,testosterone and total calcium. Maintained under constant 6L:18D and constant temperature for up to four years, rainbow trout exhibited an endogenous rhythm of maturation with a periodicity of approximately one year. This rhythm of maturation appears to be driven by an autonomous circannual oscillator or clock which can be dissociated from the neuroendocrine mechanisms controlling gonadal maturation. Under conditions of constant 18L:6D or LL the periodicity of the maturation rhythm was 5.5-6 months; it is suggested that this periodicity may be caused by a splitting or uncoupling of at least two circannual clocks involved in the control of maturation. Abrupt changes in the length of the photoperiod act as a zeitgeber to entrain the endogenous rhythm of maturation. Whether the timing of maturation is advanced or delayed depends primarily on the direction of the change in photoperiod and its timing in relation to the phase of the rhythm, with the magnitude of the alteration in photoperiod having only a supplementary effect. The effect of specific changes in photoperiod on the entrainment of the maturation cycle can be described in terms of a phase-response curve. Photic information is transduced, probably by the pineal gland, into a daily rhythm of melatonin; exposure of rainbow trout to skeleton and resonance photoperiod regimes indicated that daylength measurement is effected by endogenous circadian clock(s) rather than by hour-glass mechanisms. A gating mechanism is closely associated with the circannual clock which determines the timing of onset of maturation in virgin female rainbow trout, only allowing fish that have attained a threshold stage of development to undergo gonadal maturation. Collectively the results support the hypothesis that the female rainbow trout exhibits an endogenous circannual rhythm of maturation which can be entrained by changes in photoperiod.
Resumo:
Background Evaluation of anterior chamber depth (ACD) can potentially identify those patients at risk of angle-closure glaucoma. We aimed to: compare van Herick’s limbal chamber depth (LCDvh) grades with LCDorb grades calculated from the Orbscan anterior chamber angle values; determine Smith’s technique ACD and compare to Orbscan ACD; and calculate a constant for Smith’s technique using Orbscan ACD. Methods Eighty participants free from eye disease underwent LCDvh grading, Smith’s technique ACD, and Orbscan anterior chamber angle and ACD measurement. Results LCDvh overestimated grades by a mean of 0.25 (coefficient of repeatability [CR] 1.59) compared to LCDorb. Smith’s technique (constant 1.40 and 1.31) overestimated ACD by a mean of 0.33 mm (CR 0.82) and 0.12 mm (CR 0.79) respectively, compared to Orbscan. Using linear regression, we determined a constant of 1.22 for Smith’s slit-length method. Conclusions Smith’s technique (constant 1.31) provided an ACD that is closer to that found with Orbscan compared to a constant of 1.40 or LCDvh. Our findings also suggest that Smith’s technique would produce values closer to that obtained with Orbscan by using a constant of 1.22.
Resumo:
PURPOSE - To compare posterior vitreous chamber shape in myopia to that in emmetropia. METHODS - Both eyes of 55 adult subjects were studied, 27 with emmetropia (MSE =-0.55; <+0.75D; mean +0.09 ±0.36D) and 28 with myopia (MSE -5.87 ±2.31D). Cycloplegic refraction was measured with a Shin Nippon autorefractor and anterior chamber depth and axial length with a Zeiss IOLMaster. Posterior vitreous chamber shapes were determined from T2-weighted MRI (3-Tesla) using procedures previously reported by our laboratory. 3-D surface model coordinates were assigned to nasal, temporal, superior and inferior quadrants and plotted in 2-D to illustrate the composite shape of respective quadrants posterior to the second nodal point. Spherical analogues of chamber shape were constructed to compare relative sphericity between refractive groups and quadrants. RESULTS - Differences in shape occurred in the region posterior to points of maximum globe width and were thus in general accord with an equatorial model of myopic expansion. Shape in emmetropia is categorised distinctly as that of an oblate ellipse and in myopia as an oblate ellipse of significantly less degree such that it approximates to a sphere. There was concordance between shape and retinotopic projection of respective quadrants into right, left, superior and inferior visual fields. CONCLUSIONS - The transition in shape from oblate ellipse to sphere with axial elongation supports the hypothesis that myopia may be a consequence of equatorial restriction associated with biomechanical anomalies of the ciliary apparatus. The synchronisation of quadrant shapes with retinotopic projection suggests that binocular growth is coordinated by processes that operate beyond the optic chiasm.