7 resultados para Photoinduced darkening
em Aston University Research Archive
Resumo:
The structure of fiber Bragg gratings inscribed pointby-point by an infrared femtosecond laser is studied by quantitative phase microscopy. Results show that these gratings present a central region with a depressed refractive index surrounded by an outer corona with increased refractive index. The refractive index profile suggests the presence of microvoids embedded in a region of the core. © 2006 IEEE.
Resumo:
A periodic density functional theory method using the B3LYP hybrid exchange-correlation potential is applied to the Prussian blue analogue RbMn[Fe(CN)6] to evaluate the suitability of the method for studying, and predicting, the photomagnetic behavior of Prussian blue analogues and related materials. The method allows correct description of the equilibrium structures of the different electronic configurations with regard to the cell parameters and bond distances. In agreement with the experimental data, the calculations have shown that the low-temperature phase (LT; Fe(2+)(t(6)2g, S = 0)-CN-Mn(3+)(t(3)2g e(1)g, S = 2)) is the stable phase at low temperature instead of the high-temperature phase (HT; Fe(3+)(t(5)2g, S = 1/2)-CN-Mn(2+)(t(3)2g e(2)g, S = 5/2)). Additionally, the method gives an estimation for the enthalpy difference (HT LT) with a value of 143 J mol(-1) K(-1). The comparison of our calculations with experimental data from the literature and from our calorimetric and X-ray photoelectron spectroscopy measurements on the Rb0.97Mn[Fe(CN)6]0.98 x 1.03 H2O compound is analyzed, and in general, a satisfactory agreement is obtained. The method also predicts the metastable nature of the electronic configuration of the high-temperature phase, a necessary condition to photoinduce that phase at low temperatures. It gives a photoactivation energy of 2.36 eV, which is in agreement with photoinduced demagnetization produced by a green laser.
Resumo:
Step-index polymer optical fiber Bragg gratings (POFBGs) and microstructured polymer optical fiber Bragg gratings (mPOFBGs) present several attractive features, especially for sensing purposes. In comparison to FBGs written in silica fibers, they are more sensitive to temperature and pressure because of the larger thermo-optic coefficient and smaller Young's modulus of polymer materials. (M)POFBGs are most often photowritten in poly(methylmethacrylate) (PMMA) materials using a continuous-wave 325 nm HeCd laser. For the first time to the best of our knowledge, we study photoinduced birefringence effects in (m)POFBGs. To achieve this, highly reflective gratings were inscribed with the phase mask technique. They were then monitored in transmission with polarized light. For this, (m)POF sections a few cm in length containing the gratings were glued to angled silica fibers. Polarization dependent loss (PDL) and differential group delay (DGD) were computed from the Jones matrix eigenanalysis using an optical vector analyser. Maximum values exceeding several dB and a few picoseconds were obtained for the PDL and DGD, respectively. The response to lateral force was finally investigated. As it induces birefringence in addition to the photo-induced one, an increase of the PDL and DGD values were noticed. © 2014 Copyright SPIE.
Resumo:
Hybrid nanocomposites based on N-doped SrTiO3 nanoparticles wrapped in g-C3N4 nanosheets were successfully prepared by a facile and reproducible polymeric citrate and thermal exfoliation method. The results clearly indicated that the N-doped SrTiO3 nanoparticles are successfully wrapped in layers of the g-C3N4 nanosheets. The g-C3N4/N-doped SrTiO3 nanocomposites showed absorption edges at longer wavelengths compared with the pure g-C3N4 as well as N-doped SrTiO3. The hybrid nanocomposites exhibit an improved photocurrent response and photocatalytic activity under visible light irradiation. Interestingly, the hybrid nanocomposite possesses high photostability and reusability. Based on experimental results, the possible mechanism for prolonged lifetime of the photoinduced charge carrier was also discussed. The high performance of the g-C3N4/N-doped SrTiO3 photocatalysts is due to the synergic effect at the interface of g-C3N4 and N-doped SrTiO3 hetero/nanojunction including the high separation efficiency of the charge carrier, band energy matching and the suppressed recombination rate. Therefore, the hybrid photocatalyst could be of potential interest for water splitting and environmental remediation under natural sunlight.
Resumo:
Herein we demonstrate a facile template-free sonochemical strategy to synthesize mesoporous g-C3N4 with a high surface area and enhanced photocatalytic activity. The TEM and nitrogen adsorption–desorption studies confirm mesoporous structure in g-C3N4 body. The photocatalytic activity of mesoporous g-C3N4 is almost 5.5 times higher than that of bulk g-C3N4 under visible-light irradiation. The high photocatalytic performance of the mesoporous g-C3N4 was attributed to the much higher specific surface area, efficient adsorption ability and the unique interfacial mesoporous structure which can favour the absorption of light and separation of photoinduced electron–hole pairs more effectively. A possible photocatalytic mechanism was discussed by the radicals and holes trapping experiments. Interestingly, the synthesized mesoporous g-C3N4 possesses high reusability. Hence the mesoporous g-C3N4 can be a promising photocatalytic material for practical applications in water splitting as well as environmental remediation.
Resumo:
Novel g-C3N4/NaTaO3 hybrid nanocomposites have been prepared by a facile ultrasonic dispersion method. Our results clearly show the formation of interface between NaTaO3 and g-C3N4 and further loading of g-C3N4 did not affect the crystal structure and morphology of NaTaO3. The g-C3N4/NaTaO3 nanocomposites exhibited enhanced photocatalytic performance for the degradation of Rhodamine B under UV–visible and visible light irradiation compared to pure NaTaO3 and Degussa P25. Interestingly, the visible light photocatalytic activity is generated due to the loading of g-C3N4. A mechanism is proposed to discuss the enhanced photocatalytic activity based on trapping experiments of photoinduced radicals and holes. Under visible light irradiation, electron excited from the valance band (VB) to conduction band (CB) of g-C3N4 could directly inject into the CB of NaTaO3, making g-C3N4/NaTaO3 visible light driven photocatalyst. Since the as-prepared hybrid nanocomposites possess high reusability therefore it can be promising photocatalyst for environmental applications.
Resumo:
A facile and reproducible template free in situ precipitation method has been developed for the synthesis of Ag3PO4 nanoparticles on the surface of a g-C3N4 photocatalyst at room temperature. The g-C3N4–Ag3PO4 organic–inorganic hybrid nanocomposite photocatalysts were characterized by various techniques. TEM results show the in situ growth of finely distributed Ag3PO4 nanoparticles on the surface of the g-C3N4 sheet. The optimum photocatalytic activity of g-C3N4–Ag3PO4 at 25 wt% of g-C3N4 under visible light is almost 5 and 3.5 times higher than pure g-C3N4 and Ag3PO4 respectively. More attractively, the stability of Ag3PO4 was improved due to the in situ deposition of Ag3PO4 nanoparticles on the surface of the g-C3N4 sheet. The improved performance of the g-C3N4–Ag3PO4 hybrid nanocomposite photocatalysts under visible light irradiation was induced by a synergistic effect, including high charge separation efficiency of the photoinduced electron–hole pair, the smaller particle size, relatively high surface area and the energy band structure. Interestingly, the heterostructured g-C3N4–Ag3PO4 nanocomposite significantly reduces the use of the noble metal silver, thereby effectively reducing the cost of the Ag3PO4 based photocatalyst.