6 resultados para Photodetectors

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We experimentally investigate the use of an arrayed waveguide grating (AWG) to interrogate interferometric sensors. A single broad-band light source is used to illuminate the system. Reflected spectral information is directed to an AWG with integral photodetectors providing 40 electrical outputs. We show that using the dual-wavelength technique we can measure the length of a Fabry-Perot cavity by determining the optical phase changes of the scanned interferometric pattern, which produced a maximum unambiguous range of 1440 mum with an active sensor and a maximum unambiguous range of 300 mum with the introduction of a second processing interferometer, which allows the sensor to be passive.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We experimentally investigate the use of an arrayed waveguide grating (AWG) to interrogate fibre Bragg grating (FBG) sensors. A broadband light source is used to illuminate the FBG sensors. Reflected spectral information is directed to the AWG containing integral photodetectors providing 40 electrical outputs. Three methods are described to interrogate FBG sensors. The first technique makes use of the wavelength-dependent transmission profile of an AWG channel passband, giving a usable range of 500 µe and a dynamic strain resolution of 96 ne Hz-1/2 at 13 Hz. The second approach utilizes wide gratings larger than the channel spacing of the AWG; by monitoring the intensity present in several neighbouring AWG channels an improved range of 1890 µe was achieved. The third method improves the dynamic range by utilizing a heterodyne approach based on interferometric wavelength shift detection, providing an improved dynamic strain resolution of 17 ne Hz-1/2 at 30 Hz.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this Interdisciplinary Higher Degrees project was the development of a high-speed method of photometrically testing vehicle headlamps, based on the use of image processing techniques, for Lucas Electrical Limited. Photometric testing involves measuring the illuminance produced by a lamp at certain points in its beam distribution. Headlamp performance is best represented by an iso-lux diagram, showing illuminance contours, produced from a two-dimensional array of data. Conventionally, the tens of thousands of measurements required are made using a single stationary photodetector and a two-dimensional mechanical scanning system which enables a lamp's horizontal and vertical orientation relative to the photodetector to be changed. Even using motorised scanning and computerised data-logging, the data acquisition time for a typical iso-lux test is about twenty minutes. A detailed study was made of the concept of using a video camera and a digital image processing system to scan and measure a lamp's beam without the need for the time-consuming mechanical movement. Although the concept was shown to be theoretically feasible, and a prototype system designed, it could not be implemented because of the technical limitations of commercially-available equipment. An alternative high-speed approach was developed, however, and a second prototype syqtem designed. The proposed arrangement again uses an image processing system, but in conjunction with a one-dimensional array of photodetectors and a one-dimensional mechanical scanning system in place of a video camera. This system can be implemented using commercially-available equipment and, although not entirely eliminating the need for mechanical movement, greatly reduces the amount required, resulting in a predicted data acquisiton time of about twenty seconds for a typical iso-lux test. As a consequence of the work undertaken, the company initiated an 80,000 programme to implement the system proposed by the author.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We experimentally investigate the use of an arrayed waveguide grating (AWG) to interrogate interferometric sensors. A single broad-band light source is used to illuminate the system. Reflected spectral information is directed to an AWG with integral photodetectors providing 40 electrical outputs. We show that using the dual-wavelength technique we can measure the length of a Fabry-Pérot cavity by determining the optical phase changes of the scanned interferometric pattern, which produced a maximum unambiguous range of 1440 μm with an active sensor and a maximum unambiguous range of 300 μm with the introduction of a second processing interferometer, which allows the sensor to be passive. © 2005 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We experimentally investigate the use of an arrayed waveguide grating (AWG) to interrogate fibre Bragg grating (FBG) sensors. A broadband light source is used to illuminate the FBG sensors. Reflected spectral information is directed to the AWG containing integral photodetectors providing 40 electrical outputs. Three methods are described to interrogate FBG sensors. The first technique makes use of the wavelength-dependent transmission profile of an AWG channel passband, giving a usable range of 500 με and a dynamic strain resolution of 96 nε Hz-1/2 at 13 Hz. The second approach utilizes wide gratings larger than the channel spacing of the AWG; by monitoring the intensity present in several neighbouring AWG channels an improved range of 1890 με was achieved. The third method improves the dynamic range by utilizing a heterodyne approach based on interferometric wavelength shift detection, providing an improved dynamic strain resolution of 17 nε Hz -1/2 at 30 Hz. © 2005 IOP Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the use of an arrayed waveguide grating (AWG) to interrogate both fibre Bragg grating (FBG) and interferometric sensors. A broadband light source is used to illuminate both the FBG and interferometric sensors. Reflected spectral information is directed to an AWG with integral photodetectors providing 40 electrical outputs. To interrogate interferometric sensors we investigated the dual wavelength technique to measure the distance of a Fabry-Perot cavity, which produced a maximum unambiguous range of 1440μm with an active sensor. Three methods are described to interrogate FBG sensors. The first technique makes use of the reflected light intensity in an AWG channel passband from a narrow bandwidth grating, giving a usable range of 500με and a dynamic strain resolution of 96nε/√Hz at 30Hz. The second approach utilises wide gratings larger than the channel spacing of the AWG; by monitoring the intensity present in corresponding AWG channels an improved range of 1890με was achieved. The third method improves the dynamic range by utilising a heterodyne approach based on interferometric wavelength shift detection providing a dynamic strain resolution of 17nε/√Hz at 30Hz.