8 resultados para Phosphorylation de c-Met

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: C-Reactive protein (CRP) can modulate integrin surface expression on monocytes following Fcγ receptor engagement. We have investigated the signal transduction events causing this phenotypic alteration. Methods: CRP-induced signalling events were examined in THP-1 and primary monocytes, measuring Syk phosphorylation by Western blotting, intracellular Ca2+ ([Ca2+]i) by Indo-1 fluorescence and surface expression of CD11b by flow cytometry. Cytosolic peroxides were determined by DCF fluorescence. Results: CRP induced phosphorylation of Syk and an increase in [Ca2+]i both of which were inhibitable by the Syk specific antagonist, piceatannol. Piceatannol also inhibited the CRP-induced increase in surface CD11b. In addition, pre-treatment of primary monoytes with the Ca2+ mobiliser, thapsigargin, increased CD11b expression; this effect was accentuated in the presence of CRP but was abolished in the presence of the [Ca2+]i chelator, BAPTA. CRP also increased cytosolic peroxide levels; this effect was attenuated by antioxidants (ascorbate, α-tocopherol), expression of surface CD11b not being inhibited by antioxidants alone. Conclusion: CRP induces CD11b expression in monocytes through a peroxide independent pathway involving both Syk phosphorylation and [Ca2+]i release. © Birkhäuser Verlag, 2005.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Raf-1 protein kinase is a major activator of the ERK MAPK pathway, which links signaling by a variety of cell surface receptors to the regulation of cell proliferation, survival, differentiation and migration. Signaling by Raf-1 is regulated by a complex and poorly understood interplay between phosphorylation events and protein-protein interactions. One important mode of Raf-1 regulation involves the phosphorylation-dependent binding of 14-3-3 proteins. Here, we have examined the mechanism whereby the C-terminal 14-3-3 binding site of Raf-1, S621, controls the activation of MEK-ERK signaling. We show that phosphorylation of S621 turns over rapidly and is enriched in the activated pool of endogenous Raf-1. The phosphorylation on this site can be mediated by Raf-1 itself but also by other kinase(s). Mutations that prevent the binding of 14-3-3 proteins to S621 render Raf-1 inactive by specifically disrupting its capacity to bind to ATP, and not by gross conformational alteration as indicated by intact MEK binding. Phosphorylation of S621 correlates with the inhibition of Raf-1 catalytic activity in vitro, but 14-3-3 proteins can completely reverse this inhibition. Our findings suggest that 14-3-3 proteins function as critical cofactors in Raf-1 activation, which induce and maintain the protein in a state that is competent for both ATP binding and MEK phosphorylation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proteolysis-inducing factor (PIF) is a sulphated glycoprotein produced by cachexia-inducing tumours, which initiates muscle protein degradation through an increased expression of the ubiquitin–proteasome proteolytic pathway. The role of kinase C (PKC) in PIF-induced proteasome expression has been studied in murine myotubes as a surrogate model of skeletal muscle. Proteasome expression induced by PIF was attenuated by 4alpha-phorbol 12-myristate 13-acetate (100 nM) and by the PKC inhibitors Ro31-8220 (10 muM), staurosporine (300 nM), calphostin C (300 nM) and Gö 6976 (200 muM). Proteolysis-inducing factor-induced activation of PKCalpha, with translocation from the cytosol to the membrane at the same concentration as that inducing proteasome expression, and this effect was attenuated by calphostin C. Myotubes transfected with a constitutively active PKCalpha (pCO2) showed increased expression of proteasome activity, and a longer time course, compared with their wild-type counterparts. In contrast, myotubes transfected with a dominant-negative PKCalpha (pKS1), which showed no activation of PKCalpha in response to PIF, exhibited no increase in proteasome activity at any time point. Proteolysis-inducing factor-induced proteasome expression has been suggested to involve the transcription factor nuclear factor-kappaB (NF-kappaB), which may be activated through PKC. Proteolysis-inducing factor induced a decrease in cytosolic I-kappaBalpha and an increase in nuclear binding of NF-kappaB in pCO2, but not in pKS1, and the effect in wild-type cells was attenuated by calphostin C, confirming that it was mediated through PKC. This suggests that PKC may be involved in the phosphorylation and degradation of I-kappaBalpha, induced by PIF, necessary for the release of NF-kappaB from its inactive cytosolic complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well-known that the rapid flow of water into and out of cells is controlled by membrane proteins called aquaporins (AQPs). However, the mechanisms that allow cells to quickly respond to a changing osmotic environment are less well established. Using GFP-AQP fusion proteins expressed in HEK293 cells, we demonstrate the reversible manipulation of cellular trafficking of AQP1. AQP1 trafficking was mediated by the tonicity of the cell environment in a specific PKC- and microtubule-dependent manner. This suggests that the increased level of water transport following osmotic change may be due a phosphorylation-dependent increase in the level of AQP1 trafficking resulting in membrane localization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dehydroepiandrosterone sulfate (DHEAS) is the most abundant steroid in the human circulation and is secreted by the adrenals in an age-dependent fashion, with maximum levels during the third decade and very low levels in old age. DHEAS is considered an inactive metabolite, whereas cleavage of the sulfate group generates dehydroepiandrosterone (DHEA), a crucial sex steroid precursor. However, here we show that DHEAS, but not DHEA, increases superoxide generation in primed human neutrophils in a dose-dependent fashion, thereby impacting on a key bactericidal mechanism. This effect was not prevented by coincubation with androgen and estrogen receptor antagonists but was reversed by the protein kinase C inhibitor Bisindolylmaleimide 1. Moreover, we found that neutrophils are unique among leukocytes in expressing an organic anion-transporting polypeptide D, able to mediate active DHEAS influx transport whereas they did not express steroid sulfatase that activates DHEAS to DHEA. A specific receptor for DHEAS has not yet been identified, but we show that DHEAS directly activated recombinant protein kinase C-ß (PKC-ß) in a cell-free assay. Enhanced PKC-ß activation by DHEAS resulted in increased phosphorylation of p47phox, a crucial component of the active reduced nicotinamide adenine dinucleotide phosphate complex responsible for neutrophil superoxide generation. Our results demonstrate that PKC-ß acts as an intracellular receptor for DHEAS in human neutrophils, a signaling mechanism entirely distinct from the role of DHEA as sex steroid precursor and with important implications for immunesenescence, which includes reduced neutrophil superoxide generation in response to pathogens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Placental villous development requires the co-ordinated action of angiogenic factors on both endothelial and trophoblast cells. Like vascular endothelial growth factor (VEGF), VEGF-C increases vascular permeability, stimulates endothelial cell proliferation and migration. In the present study, we investigated the expression of VEGF-C and its receptors VEGFR-3 and VEGFR-2 in normal and intrauterine growth-restricted (IUGR) placenta. Immunolocalisation studies showed that like VEGF and VEGFR-1, VEGF-C, VEGFR-3 and VEGFR-2 co-localised to the syncytiotrophoblast, to cells in the maternal decidua, as well as to the endothelium of the large placental blood vessels. Western blot analysis demonstrated a significant decrease in placental VEGF-C and VEGFR-3 protein expression in severe IUGR as compared to gestationally-matched third trimester pregnancies. Conditioned medium from VEGF-C producing pancreatic carcinoma (Suit-2) and endometrial epithelial (Hec-1B) cell lines caused an increased association of the phosphorylated extracellular signal regulated kinase (ERK) in VEGFR-3 immunoprecipitates from spontaneously transformed first trimester trophoblast cells. VEGF121 caused dose-dependant phosphorylation of VEGFR-2 in trophoblast cells as well as stimulating DNA synthesis. In addition, premixing VEGF165 with heparin sulphate proteoglycan potentiated trophoblast proliferation and the association of phospho-ERK with the VEGFR-2 receptor. VEGF165-mediated DNA synthesis was inhibited by anti-VEGFR-2 neutralising antibody. The results demonstrate functional VEGFR-2 and VEGFR-3 receptors on trophoblast and suggest that the decreased expression of VEGF-C and VEGFR-3 may contribute to the abnormal villous development observed in IUGR placenta.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have shown that proteins within apically enriched fractions of human nasal respiratory epithelium vary their phosphohistidine content with ambient [Cl-] and other anion concentrations. This membrane-delimited phosphorylation cascade includes a multifunctional protein histidine kinase - nucleoside diphosphate kinase (NDPK). NDPK is itself a cascade component in both human and ovine airway, the self-phosphorylation of which is inhibited selectively by [Na+] in the presence of ATP (but not GTP). These findings led us to propose the existence of a dual anion-/cation-controlled phosphorylation-based "sensor" bound to the apical membrane. The present study showed that this cascade uses ATP to phosphorylate a group of proteins above 45 kDa (p45-group, identities unknown). Additionally, the Cl- dependence of ATP (but not GTP) phosphorylation is conditional on phosphatase activity and that interactions exist between the ATP- and GTP-phosphorylated components of the cascade under Cl--free conditions. As a prelude to studies in cystic fibrosis (CF) mice, we showed in the present study that NDPK is present and functionally active in normal murine airway. Since NDPK is essential for UTP synthesis and regulates fetal gut development, G proteins, K+channels, neutrophil-mediated inflammation and pancreatic secretion, the presence of ion-regulated NDPK protein in mouse airway epithelium might aid understanding of the pathogenesis of CF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 1962, D. June Sutor published the first crystallographic analysis of C–H…O hydrogen bonding based on a selection of structures then known. Her follow-up paper the next year cited more structures and provided more details, but her ideas met with formidable opposition. This review begins by describing knowledge of C-H…O hydrogen bonding available at the time from physico-chemical and spectroscopic studies. By comparison of structures cited by Sutor with modern redeterminations, the soundness of her basic data set is assessed. The plausibility of the counter-arguments against her is evaluated. Finally, her biographical details are presented along with consideration of factors that might have impeded the acceptance of her work. © 2012 Taylor & Francis.