2 resultados para Phosphatidic-acid
em Aston University Research Archive
Resumo:
Adjuvant arthritis (AA) is a condition that involves systemic oxidative stress. Unexpectedly, it was found that sarcoplasmic reticulum Ca2 +-ATPase (SERCA) activity was elevated in muscles of rats with AA compared to controls, suggesting possible conformational changes in the enzyme. There was no alteration in the nucleotide binding site but rather in the transmembrane domain according to the tryptophan polar/non-polar fluorescence ratio. Higher relative expression of SERCA, higher content of nitrotyrosine but no increase in phospholipid oxidation in AA SR was found. In vitro treatments of SR with HOCl showed that in AA animals SERCA activity was more susceptible to oxidative stress, but SR phospholipids were more resistant and SERCA could also be activated by phosphatidic acid. It was concluded that increased SERCA activity in AA was due to increased levels of SERCA protein and structural changes to the protein, probably induced by direct and specific oxidation involving reactive nitrogen species.
Resumo:
Adjuvant arthritis (AA) was induced by intradermal administration of Mycobacterium butyricum to the tail of Lewis rats. In sarcoplasmic reticulum (SR) of skeletal muscles, we investigated the development of AA. SR Ca(2+)-ATPase (SERCA) activity decreased on day 21, suggesting possible conformational changes in the transmembrane part of the enzyme, especially at the site of the calcium binding transmembrane part. These events were associated with an increased level of protein carbonyls, a decrease in cysteine SH groups, and alterations in SR membrane fluidity. There was no alteration in the nucleotide binding site at any time point of AA, as detected by a FITC fluorescence marker. Some changes observed on day 21 appeared to be reversible, as indicated by SERCA activity, cysteine SH groups, SR membrane fluidity, protein carbonyl content and fluorescence of an NCD-4 marker specific for the calcium binding site. The reversibility may represent adaptive mechanisms of AA, induced by higher relative expression of SERCA, oxidation of cysteine, nitration of tyrosine and presence of acidic phospholipids such as phosphatidic acid. Nitric oxide may regulate cytoplasmic Ca(2+) level through conformational alterations of SERCA, and decreasing levels of calsequestrin in SR may also play regulatory role in SERCA activity and expression.