6 resultados para Phase change material (PCM)

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explored a new approach to prepare phase change microcapsules using carbon-based particles via Pickering emulsions for energy storage applications. Rice-husk-char, a by-product in biofuel production, containing 53.58 wt% of carbon was used as a model carbon-based material to encapsulate hexadecane. As a model phase change material, hexadecane was emulsified in aqueous suspensions of rice-husk-char nanoparticles. Water soluble polymers poly(diallyldimethyl-ammonium chloride) and poly(sodium styrene sulfonate) were used to fix the rice-husk-char nanoparticles on the emulsion droplets through layer-by-layer assembly to enhance the structural stability of the microcapsules. The microcapsules formed are composed of a thin shell encompassing a large core consisting of hexadecane. Thermal gravimetrical and differential scanning calorimeter analyses showed the phase change enthalpy of 80.9 kJ kg−1 or 120.0 MJ m−3. Design criteria of phase change microcapsules and preparation considerations were discussed in terms of desired applications. This work demonstrated possible utilisations of biomass-originated carbon-based material for thermal energy recovery and storage applications, which can be a new route of carbon capture and utilisation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The possible evaporation of lubricant in fluid film bearings has been investigated theoretically and by experiment using a radial flow hydrostatic bearing supplied with liquid refrigerant R114. Good correlation between measured and theoretical values was obtained using a bespoke computational fluid dynamic model in which the flow was assumed to be laminar and adiabatic. The effects of viscous dissipation and vapour generation within the fluid film are fully accounted for by applying a fourth order Runge-Kutta routine to satisfy the radial and filmwise transverse constraints of momentum, energy and mass conservation. The results indicate that the radial velocity profile remains parabolic while the flow remains in the liquid phase and that the radial rate of enthalpy generation is then constant across the film at a given radius. The results also show that evaporation will commence at a radial location determined by geometry and flow conditions and in fluid layers adjacent to the solid boundaries. Evaporation is shown to progress in the radial direction and the load carrying capacity of such a bearing is reduced significantly. Expressions for the viscosity of the liquid/vapour mixture found in the literature survey have not been tested against experimental data. A new formulation is proposed in which the suitable choice of a characteristic constant yields close representation to any of these expressions. Operating constraints imposed by the design of the experimental apparatus limited the extent of the surface over which evaporation could be obtained, and prevented clear identification of the most suitable relationship for the viscosity of the liquid/vapour mixture. The theoretical model was extended to examine the development of two phase flow in a rotating shaft face seal of uniform thickness. Previous theoretical analyses have been based on the assumption that the radial velocity profile of the flow is always parabolic, and that the tangential component of velocity varies linearly from the value at the rotating surface, to zero at the stationary surface. The computational fluid dynamic analysis shows that viscous shear and dissipation in the fluid adjacent to the rotating surface leads to developing evaporation with a consequent reduction in tangential shear forces. The tangential velocity profile is predicted to decay rapidly through the film, exhibiting a profile entirely different to that assumed by previous investigators. Progressive evaporation takes place close to the moving wall and does not occur completely at a single radial location, as has been claimed in earlier work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The demand for fresh water production is growing day by day with the increase in world population and with industrial growth. Use of desalination technology is increasing to meet this demand. Among desalination technologies, solar stills require low maintenance and are readily affordable; however their productivity is limited. This paper aims to give a detailed review about the various types of solar stills, covering passive and active designs, single- and multi-effect types, and the various modifications for improved productivity including reflectors, heat storage, fins, collectors, condensers, and mechanisms for enhancing heat and mass transfer. Photovoltaic-thermal and greenhouse type solar stills are also covered. Material advances in the area of phase change materials and nanocomposites are very promising to enhance further performance; future research should be carried out in these and other areas for the greater uptake of solar still technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Following a scene-setting introduction are detailed reviews of the relevant scientific principles, thermal analysis as a research tool and the development of the zinc-aluminium family of alloys. A recently introduced simultaneous thermal analyser, the STA 1500, its use for differential thermal analysis (DTA) being central to the investigation, is described, together with the sources of support information, chemical analysis, scanning electron microscopy, ingot cooling curves and fluidity spiral castings. The compositions of alloys tested were from the binary zinc-aluminium system, the ternary zinc-aluminium-silicon system at 30%, 50% and 70% aluminium levels, binary and ternary alloys with additions of copper and magnesium to simulate commercial alloys and five widely used commercial alloys. Each alloy was shotted to provide the smaller, 100mg, representative sample required for DTA. The STA 1500 was characterised and calibrated with commercially pure zinc, and an experimental procedure established for the determination of DTA heating curves at 10°C per minute and cooling curves at 2°C per minute. Phase change temperatures were taken from DTA traces, most importantly, liquidus from a cooling curve and solidus from both heating and cooling curves. The accepted zinc-aluminium binary phase diagram was endorsed with the added detail that the eutectic is at 5.2% aluminium rather than 5.0%. The ternary eutectic trough was found to run through the points, 70% Al, 7.1% Si, 545°C; 50% Al, 3.9% Si, 520°C; 30% Al, 1.4% Si, 482°C. The dendrite arm spacing in samples after DTA increased with increasing aluminium content from 130m at 30% to 220m at 70%. The smallest dendrite arm spacing of 60m was in the 30% aluminium 2% silicon alloy. A 1kg ingot of the 10% aluminium binary alloy, insulated with Kaowool, solidified at the same 2°C per minute rate as the DTA samples. A similar sized sand casting was solidified at 3°C per minute and a chill casting at 27°C per minute. During metallographic examination the following features were observed: heavily cored phase which decomposed into ' and '' on cooling; needles of the intermetallic phase FeAl4; copper containing ternary eutectic and copper rich T phase.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Purpose: Changes in refractive error are well documented over the typical human lifespan. However, a relatively neglected period of investigation appears to be during the late fourth decade; this is at the incipient phase of presbyopia (IP), where the amplitude of accommodation is much reduced and approaches the level where a first reading addition is anticipated. Significantly, informal clinical observation has suggested a low incidence of an unexpected abrupt increase in myopia during IP. Methods: We investigated this alleged myopic shift retrospectively by mapping the longitudinal refraction histories of normally-sighted 35-44years old British White patients previously examined in routine optometric practice. The refractive trends in the right eyes of healthy myopic subjects (spherical equivalent refraction, SER =-0.50D: N=39) were analysed relative to that point at which a first near dioptric addition was considered to be clinically useful. Results: A refractive change was evident in some subjects during IP; viz, an abrupt increase in myopic SER of between -0.50 and -0.75D. These individuals (N=8) represented 20% of the study population of myopic incipient presbyopes. Beyond the pivotal point of the first near addition the longitudinal refraction stabilized in these subjects. In contrast, and as the extent of the available longitudinal data would permit, the remaining myopic eyes maintained an approximately stable refractive trend throughout IP and beyond. Conclusions: The anatomical or physiological basis of this specific late (non-developmental) abrupt myopic refractive change is an intriguing issue. Axial (vitreous chamber elongation), corneal (contour) and lenticular (profile and index) power bases, alone or in concert, might be considered candidates for this hitherto unexplored refractive phenomenon. Although necessarily obtained under conventional conditions of central (0deg) fixation, our data might also be a reflection of the recent recognition of the possible influence of the peripheral refraction upon the axial error. Consideration of this material provides an impetus for further research, including ocular biometry, a reappraisal of ciliary zonular functional anatomy, renewed investigation of the AC/A ratio, and the extent of a centripetal refractive influence on myopia development. © 2011 The College of Optometrists.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The human visual system is sensitive to second-order modulations of the local contrast (CM) or amplitude (AM) of a carrier signal. Second-order cues are detected independently of first-order luminance signals; however, it is not clear why vision should benet from second-order sensitivity. Analysis of the first-and second-order contents of natural images suggests that these cues tend to occur together, but their phase relationship varies. We have shown that in-phase combinations of LM and AM are perceived as a shaded corrugated surface whereas the anti-phase combination can be seen as corrugated when presented alone or as a flat material change when presented in a plaid containing the in-phase cue. We now extend these findings using new stimulus types and a novel haptic matching task. We also introduce a computational model based on initially separate first-and second-order channels that are combined within orientation and subsequently across orientation to produce a shading signal. Contrast gain control allows the LM + AM cue to suppress responses to the LM-AM when presented in a plaid. Thus, the model sees LM -AM as flat in these circumstances. We conclude that second-order vision plays a key role in disambiguating the origin of luminance changes within an image. © ARVO.