7 resultados para Pharmacokinetic Model

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT • Little is known about the pharmacokinetics of potassium canrenoate/canrenone in paediatric patients WHAT THIS STUDY ADDS • A population pharmacokinetic model has been developed to evaluate the pharmacokinetics of canrenone in paediatric patients who received potassium canrenoate as part of their therapy in the intensive care unit. AIMS To characterize the population pharmacokinetics of canrenone following administration of potassium canrenoate to paediatric patients. METHODS Data were collected prospectively from 23 paediatric patients (2 days to 10 years of age; median weight 4 kg, range 2.16–28.0 kg) who received intravenous potassium canrenoate (K-canrenoate) as part of their intensive care therapy for removal of retained fluids, e.g. in pulmonary oedema due to chronic lung disease and for the management of congestive heart failure. Plasma samples were analyzed by HPLC for determination of canrenone (the major metabolite and pharmacologically active moiety) and the data subjected to pharmacokinetic analysis using NONMEM. RESULTS A one compartment model best described the data. The only significant covariate was weight (WT). The final population models for canrenone clearance (CL/F) and volume of distribution (V/F) were CL/F (l h−1) = 11.4 × (WT/70.0)0.75 and V/F (l) = 374.2 × (WT/70) where WT is in kg. The values of CL/F and V/F in a 4 kg child would be 1.33 l h−1 and 21.4 l, respectively, resulting in an elimination half-life of 11.2 h. CONCLUSIONS The range of estimated CL/F in the study population was 0.67–7.38 l h−1. The data suggest that adjustment of K-canrenoate dosage according to body weight is appropriate in paediatric patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Central nervous system (CNS) drug disposition is dictated by a drug’s physicochemical properties and its ability to permeate physiological barriers. The blood–brain barrier (BBB), blood-cerebrospinal fluid barrier and centrally located drug transporter proteins influence drug disposition within the central nervous system. Attainment of adequate brain-to-plasma and cerebrospinal fluid-to-plasma partitioning is important in determining the efficacy of centrally acting therapeutics. We have developed a physiologically-based pharmacokinetic model of the rat CNS which incorporates brain interstitial fluid (ISF), choroidal epithelial and total cerebrospinal fluid (CSF) compartments and accurately predicts CNS pharmacokinetics. The model yielded reasonable predictions of unbound brain-to-plasma partition ratio (Kpuu,brain) and CSF:plasma ratio (CSF:Plasmau) using a series of in vitro permeability and unbound fraction parameters. When using in vitro permeability data obtained from L-mdr1a cells to estimate rat in vivo permeability, the model successfully predicted, to within 4-fold, Kpuu,brain and CSF:Plasmau for 81.5% of compounds simulated. The model presented allows for simultaneous simulation and analysis of both brain biophase and CSF to accurately predict CNS pharmacokinetics from preclinical drug parameters routinely available during discovery and development pathways.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The small intestine poses a major barrier to the efficient absorption of orally administered therapeutics. Intestinal epithelial cells are an extremely important site for extrahepatic clearance, primarily due to prominent P-glycoprotein-mediated active efflux and the presence of cytochrome P450s. We describe a physiologically based pharmacokinetic model which incorporates geometric variations, pH alterations and descriptions of the abundance and distribution of cytochrome 3A and P-glycoprotein along the length of the small intestine. Simulations using preclinical in vitro data for model drugs were performed to establish the influence of P-glycoprotein efflux, cytochrome 3A metabolism and passive permeability on drug available for absorption within the enterocytes. The fraction of drug escaping the enterocyte (F(G)) for 10 cytochrome 3A substrates with a range of intrinsic metabolic clearances were simulated. Following incorporation of P-glycoprotein in vitro efflux ratios all predicted F(G) values were within 20% of observed in vivo F(G). The presence of P-glycoprotein increased the level of cytochrome 3A drug metabolism by up to 12-fold in the distal intestine. F(G) was highly sensitive to changes in intrinsic metabolic clearance but less sensitive to changes in intestinal drug permeability. The model will be valuable for quantifying aspects of intestinal drug absorption and distribution.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aims - To build a population pharmacokinetic model that describes the apparent clearance of tacrolimus and the potential demographic, clinical and genetically controlled factors that could lead to inter-patient pharmacokinetic variability within children following liver transplantation. Methods - The present study retrospectively examined tacrolimus whole blood pre-dose concentrations (n = 628) of 43 children during their first year post-liver transplantation. Population pharmacokinetic analysis was performed using the non-linear mixed effects modelling program (nonmem) to determine the population mean parameter estimate of clearance and influential covariates. Results - The final model identified time post-transplantation and CYP3A5*1 allele as influential covariates on tacrolimus apparent clearance according to the following equation: TVCL = 12.9 x (Weight/13.2)0.35 x EXP (-0.0058 x TPT) x EXP (0.428 x CYP3A5) where TVCL is the typical value for apparent clearance, TPT is time post-transplantation in days and the CYP3A5 is 1 where *1 allele is present and 0 otherwise. The population estimate and inter-individual variability (%CV) of tacrolimus apparent clearance were found to be 0.977 l h−1 kg−1 (95% CI 0.958, 0.996) and 40.0%, respectively, while the residual variability between the observed and predicted concentrations was 35.4%. Conclusion Tacrolimus apparent clearance was influenced by time post-transplantation and CYP3A5 genotypes. The results of this study, once confirmed by a large scale prospective study, can be used in conjunction with therapeutic drug monitoring to recommend tacrolimus dose adjustments that take into account not only body weight but also genetic and time-related changes in tacrolimus clearance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT • The cytotoxic effects of 6-mercaptopurine (6-MP) were found to be due to drug-derived intracellular metabolites (mainly 6-thioguanine nucleotides and to some extent 6-methylmercaptopurine nucleotides) rather than the drug itself. • Current empirical dosing methods for oral 6-MP result in highly variable drug and metabolite concentrations and hence variability in treatment outcome. WHAT THIS STUDY ADDS • The first population pharmacokinetic model has been developed for 6-MP active metabolites in paediatric patients with acute lymphoblastic leukaemia and the potential demographic and genetically controlled factors that could lead to interpatient pharmacokinetic variability among this population have been assessed. • The model shows a large reduction in interindividual variability of pharmacokinetic parameters when body surface area and thiopurine methyltransferase polymorphism are incorporated into the model as covariates. • The developed model offers a more rational dosing approach for 6-MP than the traditional empirical method (based on body surface area) through combining it with pharmacogenetically guided dosing based on thiopurine methyltransferase genotype. AIMS - To investigate the population pharmacokinetics of 6-mercaptopurine (6-MP) active metabolites in paediatric patients with acute lymphoblastic leukaemia (ALL) and examine the effects of various genetic polymorphisms on the disposition of these metabolites. METHODS - Data were collected prospectively from 19 paediatric patients with ALL (n = 75 samples, 150 concentrations) who received 6-MP maintenance chemotherapy (titrated to a target dose of 75 mg m−2 day−1). All patients were genotyped for polymorphisms in three enzymes involved in 6-MP metabolism. Population pharmacokinetic analysis was performed with the nonlinear mixed effects modelling program (nonmem) to determine the population mean parameter estimate of clearance for the active metabolites. RESULTS - The developed model revealed considerable interindividual variability (IIV) in the clearance of 6-MP active metabolites [6-thioguanine nucleotides (6-TGNs) and 6-methylmercaptopurine nucleotides (6-mMPNs)]. Body surface area explained a significant part of 6-TGNs clearance IIV when incorporated in the model (IIV reduced from 69.9 to 29.3%). The most influential covariate examined, however, was thiopurine methyltransferase (TPMT) genotype, which resulted in the greatest reduction in the model's objective function (P < 0.005) when incorporated as a covariate affecting the fractional metabolic transformation of 6-MP into 6-TGNs. The other genetic covariates tested were not statistically significant and therefore were not included in the final model. CONCLUSIONS - The developed pharmacokinetic model (if successful at external validation) would offer a more rational dosing approach for 6-MP than the traditional empirical method since it combines the current practice of using body surface area in 6-MP dosing with a pharmacogenetically guided dosing based on TPMT genotype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims - To characterize the population pharmacokinetics of ranitidine in critically ill children and to determine the influence of various clinical and demographic factors on its disposition. Methods - Data were collected prospectively from 78 paediatric patients (n = 248 plasma samples) who received oral or intravenous ranitidine for prophylaxis against stress ulcers, gastrointestinal bleeding or the treatment of gastro-oesophageal reflux. Plasma samples were analysed using high-performance liquid chromatography, and the data were subjected to population pharmacokinetic analysis using nonlinear mixed-effects modelling. Results - A one-compartment model best described the plasma concentration profile, with an exponential structure for interindividual errors and a proportional structure for intra-individual error. After backward stepwise elimination, the final model showed a significant decrease in objective function value (−12.618; P < 0.001) compared with the weight-corrected base model. Final parameter estimates for the population were 32.1 l h−1 for total clearance and 285 l for volume of distribution, both allometrically modelled for a 70 kg adult. Final estimates for absorption rate constant and bioavailability were 1.31 h−1 and 27.5%, respectively. No significant relationship was found between age and weight-corrected ranitidine pharmacokinetic parameters in the final model, with the covariate for cardiac failure or surgery being shown to reduce clearance significantly by a factor of 0.46. Conclusions - Currently, ranitidine dose recommendations are based on children's weights. However, our findings suggest that a dosing scheme that takes into consideration both weight and cardiac failure/surgery would be more appropriate in order to avoid administration of higher or more frequent doses than necessary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To characterize the population pharmacokinetics of canrenone following administration of potassium canrenoate (K-canrenoate) in paediatric patients. Methods: Data were collected prospectively from 37 paediatric patients (median weight 2.9 kg, age range 2 days–0.85 years) who received intravenous K-canrenoate for management of retained fluids, for example in heart failure and chronic lung disease. Dried blood spot (DBS) samples (n = 213) from these were analysed for canrenone content and the data subjected to pharmacokinetic analysis using nonlinear mixed-effects modelling. Another group of patients (n = 16) who had 71 matching plasma and DBS samples was analysed separately to compare canrenone pharmacokinetic parameters obtained using the two different matrices. Results: A one-compartment model best described the DBS data. Significant covariates were weight, postmenstrual age (PMA) and gestational age. The final population models for canrenone clearance (CL/F) and volume of distribution (V/F) in DBS were CL/F (l/h) = 12.86 ×  (WT/70.0)0.75 × e [0.066 ×  (PMA - 40]) and V/F (l) = 603.30 ×  (WT/70) × (GA/40)1.89 where weight is in kilograms. The corresponding values of CL/F and V/F in a patient with a median weight of 2.9 kg are 1.11 l/h and 20.48 l, respectively. Estimated half-life of canrenone based on DBS concentrations was similar to that based on matched plasma concentrations (19.99 and 19.37 h, respectively, in 70 kg patient). Conclusion: The range of estimated CL/F in DBS for the study population was 0.12–9.62 l/h; hence, bodyweight-based dosage adjustment of K-canrenoate appears necessary. However, a dosing scheme that takes into consideration both weight and age (PMA/gestational age) of paediatric patients seems more appropriate.