26 resultados para Perry.
em Aston University Research Archive
Resumo:
The laminar distribution of the neurofilament inclusions (NI) and swollen achromatic neurons (SN) was studied in gyri of the temporal cortex in four patients with neurofilament inclusion disease (NID). In 84% of gyri analysed, the density of the NI was maximal in the lower cortical laminae. The distribution of the SN was more variable than the NI. Density was maximal in the lower cortex in 46% of gyri, in the upper cortical laminae in 8% of gyri, and a bimodal distribution in 15% of gyri. In the remaining gyri, there was a more even distribution of SN with cortical depth. In 31% of gyri, the vertical density of the NI was positively correlated with that of the SN. The data suggest that cortical degeneration in the temporal lobe of NID initially affects neurons in the lower laminae. Subsequently, the pathology may spread to affect much of the cortical profile, the SN preceding the appearance of the NI.
Resumo:
This article describes the experience of developing an enhanced public health role for a community pharmacy in the Castle Vale estate in Birmingham. It shows that the neighbourhood-based regeneration context of Castle Vale has created a stimulating setting for an ambitious and innovative pharmacy company to demonstrate what might be possible on a much wider scale in the UK. A core ethos of the Castle Vale regeneration initiative has been public-private partnership and this project reveals some 'critical success factors' for on-the-ground achievement.
Resumo:
Neurofilament inclusion disease (NID) is a novel neurodegenerative disease characterized histologically by the presence of neurofilament positive neuronal inclusions (NI) and swollen achromatic neurons (SN). The density and distribution of NI and SN were studied in areas of the temporal lobe in four cases of NID. In NID, the density of the NI and SN was greater in areas of the cerebral cortex compared with the hippocampus and dentate gyrus. Lesion densities were similar in the different gyri of the temporal cortex and in the various cornu ammonis sectors of the hippocampus. In the cerebral cortex, the density of the NI and SN was greater in the lower compared with the upper cortical laminae. There was no significant correlation between the densities of the NI and SN. The distribution of the temporal lobe pathology of NID has several differences from that reported in Pick's disease and corticobasal degeneration supporting the hypothesis that NID is a novel and unique type of neurodegenerative disease. © 2003 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Immunofluorescence microscopy-based identification of presumptive Propionibacterium acnes isolates, using the P. acnes-specific mAb QUBPa3, revealed five organisms with an atypical cellular morphology. Unlike the coryneform morphology seen with P. acnes types I and II, these isolates exhibited long slender filaments (which formed large tangled aggregates) not previously described in P. acnes. No reaction with mAbs that label P. acnes types IA (QUBPa1) and II (QUBPa2) was observed. Nucleotide sequencing of the 16S rRNA gene (1484 bp) revealed the isolates to have between 99.8 and 99.9 % identity to the 16S rRNA gene of the P. acnes type IA, IB and II strains NCTC 737, KPA171202 and NCTC 10390, respectively. Analysis of the recA housekeeping gene (1047 bp) did reveal, however, a greater number of conserved nucleotide polymorphisms between the sequences from these isolates and those from NCTC 737 (98.9 % identity), KPA171202 (98.9 % identity) and NCTC 10390 (99.1 % identity). Phylogenetic investigations demonstrated that the isolates belong to a novel recA cluster or lineage distinct from P. acnes types I and II. We now propose this new grouping as P. acnes type III. The prevalence and clinical importance of this novel recA lineage amongst isolates of P. acnes remains to be determined.
Resumo:
Propionibacterium acnes, a common skin organism, is most notably recognized for its role in acne vulgaris. It also causes postoperative and device-related infections and has been associated with a number of other conditions such as sarcoidosis and synovitis, acne, pustulosis, hyperostosis and osteitis (SAPHO), although its precise role as a causative agent remains to be determined. Propionibacterium acnes produces a number of virulence factors and is well known for its inflammatory and immunomodulatory properties. Recent publication of the P. acnes genome should provide further insights into the pathogenic capabilities of the organism and potentially lead to the development of new therapies. © 2006 The Society for Applied Microbiology.
Resumo:
Random amplification of polymorphic DNA (RAPD) was evaluated as a genotypic method for typing clinical strains of Propionibacterium acnes. RAPD can suffer from problems of reproducibility if parameters are not standardised. In this study the reaction conditions were optimised by adjusting template DNA concentration and buffer constituents. All isolates were typeable using the optimised RAPD protocol which was found to be highly discriminatory (Simpson's diversity index, 0.98) and reproducible. Typing of P. acnes by optimised RAPD is an invaluable tool for the epidemiological investigation of P. acnes for which no other widely accepted method currently exists. © 2003 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Propionibacterium acnes forms part of the normal flora of the skin, oral cavity, large intestine and the external ear. Historically, P. acnes is considered to be of low virulence; however, in recent years it has been found as the aetiological agent in various pathologies including acne vulgaris, endophthalmitis, endocarditis, osteomyelitis, sarcoidosis, prosthetic hip infections and sciatica. It currently remains unclear why this normally harmless commensal can cause infection and contribute to a number of clinically significant conditions. This thesis has sought to investigate the phenotypic, genetic and antigenic properties of P.acnes strains isolated from sciatica patients undergoing microdiscectomy, normal skin, blood cultures, prosthetic hips and acne lesions. Isolates' phenotype was examined by determining their biotype by analytical profile index, antimicrobial susceptibility, virulence factor expression and serotype. A molecular typing method for P.acnes was developed using random amplification of polymorphic DNA (RAPD). Patient serum was used to screen P.acnes strains for antigens expressed in vivo and the chemical composition determined. The serodiagnostic potential and inflammatory properties of identified antigens were assessed. The optimised and reproducible RAPD protocol classified strains into three major clusters and was found to distinguish between the serotypes I and II for a large number of clinical isolates. Molecular typing by RAPD also enabled the identification of a genotype that did not react with the type I or II monoclonal antibodies and these strains may therefore constitute a previously undiscovered subspecies of P.acnes with a genetic background different from the type I and II serotypes. A major cell associated antigen produced by all strains was identified and characterised. A serological assay based on the antigen was used to measure IgG and IgM levels in serum from patients with acne, sciatica and controls. No difference in levels of antibodies was detected. Inflammatory properties of the antigen were measured by exposing murine macrophage-like cells and measuring the release of nitric oxide and tumour necrosis factor-alpha (TNF-α). Only TNF-α was elicited in response to the antigen. The phenotypic, genotypic and antigenic properties of this organism may provide a basis for future studies on P.acnes virulence and provide an insight into its mechanisms of pathogenesis.
Resumo:
Neuronal intermediate filament inclusion disease (NIFID), a rare form of frontotemporal lobar degeneration (FTLD), is characterized neuropathologically by focal atrophy of the frontal and temporal lobes, neuronal loss, gliosis, and neuronal cytoplasmic inclusions (NCI) containing epitopes of ubiquitin and neuronal intermediate filament proteins. Recently, the 'fused in sarcoma' (FUS) protein (encoded by the FUS gene) has been shown to be a component of the inclusions of familial amyotrophic lateral sclerosis with FUS mutation, NIFID, basophilic inclusion body disease, and atypical FTLD with ubiquitin-immunoreactive inclusions (aFTLD-U). To further characterize FUS proteinopathy in NIFID, and to determine whether the pathology revealed by FUS immunohistochemistry (IHC) is more extensive than a-internexin, we have undertaken a quantitative assessment of ten clinically and neuropathologically well-characterized cases using FUS IHC. The densities of NCI were greatest in the dentate gyrus (DG) and in sectors CA1/2 of the hippocampus. Anti-FUS antibodies also labeled glial inclusions (GI), neuronal intranuclear inclusions (NII), and dystrophic neurites (DN). Vacuolation was extensive across upper and lower cortical layers. Significantly greater densities of abnormally enlarged neurons and glial cell nuclei were present in the lower compared with the upper cortical laminae. FUS IHC revealed significantly greater numbers of NCI in all brain regions especially the DG. Our data suggest: (1) significant densities of FUS-immunoreactive NCI in NIFID especially in the DG and CA1/2; (2) infrequent FUS-immunoreactive GI, NII, and DN; (3) widely distributed vacuolation across the cortex, and (4) significantly more NCI revealed by FUS than a-internexin IHC.
Resumo:
Neuronal intermediate filament inclusion disease (NIFID), a rare form of frontotemporal lobar degeneration (FTLD), is characterized neuropathologically by focal atrophy of the frontal and temporal lobes, neuronal loss, gliosis, and neuronal cytoplasmic inclusions (NCI) containing epitopes of ubiquitin and neuronal intermediate filament (IF) proteins. Recently, the 'fused in sarcoma' (FUS) protein (encoded by the FUS gene) has been shown to be a component of the inclusions of NIFID. To further characterize FUS proteinopathy in NIFID, we studied the spatial patterns of the FUS-immunoreactive NCI in frontal and temporal cortex of 10 cases. In the cerebral cortex, sectors CA1/2 of the hippocampus, and the dentate gyrus (DG), the FUS-immunoreactive NCI were frequently clustered and the clusters were regularly distributed parallel to the tissue boundary. In a proportion of cortical gyri, cluster size of the NCI approximated to those of the columns of cells was associated with the cortico-cortical projections. There were no significant differences in the frequency of different types of spatial patterns with disease duration or disease stage. Clusters of NCI in the upper and lower cortex were significantly larger using FUS compared with phosphorylated, neurofilament heavy polypeptide (NEFH) or a-internexin (INA) immunohistochemistry (IHC). We concluded: (1) FUS-immunoreactive NCI exhibit similar spatial patterns to analogous inclusions in the tauopathies and synucleinopathies, (2) clusters of FUS-immunoreactive NCI are larger than those revealed by NEFH or ???, and (3) the spatial patterns of the FUS-immunoreactive NCI suggest the degeneration of the cortico-cortical projections in NIFID.
Resumo:
Magnetoencephalography (MEG) can be used to reconstruct neuronal activity with high spatial and temporal resolution. However, this reconstruction problem is ill-posed, and requires the use of prior constraints in order to produce a unique solution. At present there are a multitude of inversion algorithms, each employing different assumptions, but one major problem when comparing the accuracy of these different approaches is that often the true underlying electrical state of the brain is unknown. In this study, we explore one paradigm, retinotopic mapping in the primary visual cortex (V1), for which the ground truth is known to a reasonable degree of accuracy, enabling the comparison of MEG source reconstructions with the true electrical state of the brain. Specifically, we attempted to localize, using a beanforming method, the induced responses in the visual cortex generated by a high contrast, retinotopically varying stimulus. Although well described in primate studies, it has been an open question whether the induced gamma power in humans due to high contrast gratings derives from V1 rather than the prestriate cortex (V2). We show that the beanformer source estimate in the gamma and theta bands does vary in a manner consistent with the known retinotopy of V1. However, these peak locations, although retinotopically organized, did not accurately localize to the cortical surface. We considered possible causes for this discrepancy and suggest that improved MEG/magnetic resonance imaging co-registration and the use of more accurate source models that take into account the spatial extent and shape of the active cortex may, in future, improve the accuracy of the source reconstructions.
Resumo:
Return-to-Zero (RZ) and Non-Return-to-Zero (NRZ) Differential Phase Shift Keyed (DPSK) systems require cheap and optimal transmitters for widespread implementation. The authors report on a gain switched Discrete Mode (DM) laser that can be employed as a cost efficient transmitter in a 10.7 Gb/s RZ DPSK system and compare its performance to that of a gain switched Distributed Feed-Back (DFB) laser. Experimental results show that the gain switched DM laser readily provides error free performance and a receiver sensitivity of -33.1 dBm in the 10.7 Gbit/s RZ DPSK system. The standard DFB laser on the other hand displays an error floor at 10(-1) in the same RZ DPSK system. The difference in performance, between the two types of gain switched transmitters, is analysed by investigating their linewidths. We also demonstrate, for the first time, the generation of a highly coherent gain switched pulse train which displays a spectral comb of approximately 13 sidebands spaced by the 10.7 GHz modulation frequency. The filtered side-bands are then employed as narrow linewidth Continuous Wave (CW) sources in a 10.7 Gb/s NRZ DPSK system.
Resumo:
Early embryonic development is known to be susceptible to maternal undernutrition, leading to a disease-related postnatal phenotype. To determine whether this sensitivity extended into oocyte development, we examined the effect of maternal normal protein diet (18% casein; NPD) or isocaloric low protein diet (9% casein; LPD) restricted to one ovulatory cycle (3.5 days) prior to natural mating in female MF-1 mice. After mating, all females received NPD for the remainder of gestation and all offspring were litter size adjusted and fed standard chow. No difference in gestation length, litter size, sex ratio or postnatal growth was observed between treatments. Maternal LPD did, however, induce abnormal anxiety-related behaviour in open field activities in male and female offspring (P <0.05). Maternal LPD offspring also exhibited elevated systolic blood pressure (SBP) in males at 9 and 15 weeks and in both sexes at 21 weeks (P <0.05). Male LPD offspring hypertension was accompanied by attenuated arterial responsiveness in vitro to vasodilators acetylcholine and isoprenaline (P <0.05). LPD female offspring adult kidneys were also smaller, but had increased nephron numbers (P <0.05). Moreover, the relationship between SBP and kidney or heart size or nephron number was altered by diet treatment (P <0.05). These data demonstrate the sensitivity of mouse maturing oocytes in vivo to maternal protein undernutrition and identify both behavioural and cardiovascular postnatal outcomes, indicative of adult disease. These outcomes probably derive from a direct effect of protein restriction, although indirect stress mechanisms may also be contributory. Similar and distinct postnatal outcomes were observed here compared with maternal LPD treatment during post-fertilization preimplantation development which may reflect the relative contribution of the paternal genome. © Journal compilation © 2008 The Physiological Society.
Resumo:
Poor maternal nutrition during pregnancy can alter postnatal phenotype and increase susceptibility to adult cardiovascular and metabolic diseases. However, underlying mechanisms are largely unknown. Here, we show that maternal low protein diet (LPD), fed exclusively during mouse preimplantation development, leads to offspring with increased weight from birth, sustained hypertension, and abnormal anxiety-related behavior, especially in females. These adverse outcomes were interrelated with increased perinatal weight being predictive of later adult overweight and hypertension. Embryo transfer experiments revealed that the increase in perinatal weight was induced within blastocysts responding to preimplantation LPD, independent of subsequent maternal environment during later pregnancy. We further identified the embryo-derived visceral yolk sac endoderm (VYSE) as one mediator of this response. VYSE contributes to fetal growth through endocytosis of maternal proteins, mainly via the multiligand megalin (LRP2) receptor and supply of liberated amino acids. Thus, LPD maintained throughout gestation stimulated VYSE nutrient transport capacity and megalin expression in late pregnancy, with enhanced megalin expression evident even when LPD was limited to the preimplantation period. Our results demonstrate that in a nutrient-restricted environment, the preimplantation embryo activates physiological mechanisms of developmental plasticity to stablize conceptus growth and enhance postnatal fitness. However, activation of such responses may also lead to adult excess growth and cardiovascular and behavioral diseases. © 2008 by the Society for the Study of Reproduction, Inc.