2 resultados para Permeability testing
em Aston University Research Archive
Resumo:
A cell culture model of the gastric epithelial cell surface would prove useful for biopharmaceutical screening of new chemical entities and dosage forms. A successful model should exhibit tight junction formation, maintenance of differentiation and polarity. Conditions for primary culture of guinea-pig gastric mucous epithelial cell monolayers on Tissue Culture Plastic (TCP) and membrane insects (Transwells) were established. Tight junction formation for cells grown on Transwells for three days was assessed by measurement of transepithelial resistance (TEER) and permeability of mannitol and fluorescein. Coating the polycarbonate filter with collagen IV, rather with collagen I, enhanced tight junction formation. TEER for cells grown on Transwells coated with collagen IV was close to that obtained with intact guinea-pig gastric epithelium in vitro. Differentiation was assessed by incorporation of [3H] glucosamine into glycoprotein and by activity of NADPH oxidase, which produces superoxide. Both of these measures were greater for cells grown on filters coated with collagen I than for cells grown on TCP, but no major difference was found between cells grown on collagens I and IV. However, monolayers grown on membranes coated with collagen IV exhibited apically polarized secretion of mucin and superoxide. The proportion of cells, which stained positively for mucin with periodic Schiff reagent, was greater than 95% for all culture conditions. Gastric epithelial monolayers grown on Transwells coated with collagen IV were able to withstand transient (30 min) apical acidification to pH 3, which was associated with a decrease in [3H] mannitol flux and an increase in TEER relative to pH 7.4. The model was used to provide the first direct demonstration that an NSAID (indomethacin) accumulated in gastric epithelial cells exposed to low apical pH. In conclusion, guinea-pig epithelial cells cultured on collagen IV represent a promising model of the gastric surface epithelium suitable for screening procedures.
Resumo:
Functionality of an open graded friction course (OGFC) depends on the high interconnected air voids or pores of the OGFC mixture. The authors' previous study indicated that the pores in the OGFC mixture were easily clogged by rutting deformation. Such a deformation-related clogging can cause a significant rutting-induced permeability loss in the OGFC mixture. The objective of this study was to control and reduce the rutting-induced permeability loss of the OGFC based on mixture design and layer thickness. Eight types of the OGFC mixtures with different air void contents, gradations, and nominal maximum aggregate sizes were fabricated in the laboratory. Wheel-tracking rutting tests were conducted on the OGFC slabs to simulate the deformation-related clogging. Permeability tests after different wheel load applications were performed on the rutted OGFC slabs using a falling head permeameter developed in the authors' previous study. The relationships between permeability loss and rutting depth as well as dynamic stability were developed based on the eight OGFC mixtures' test results. The thickness effects of the single-layer and the two-layer OGFC slabs were also discussed in terms of deformation-related clogging and the rutting-induced permeability loss. Results showed that the permeability coefficient decreases linearly with an increasing rutting depth of the OGFC mixtures. Rutting depth was recommended as a design index to control permeability loss of the OGFC mixture rather than the dynamic stability. Permeability loss due to deformation-related clogging can be effectively reduced by using a thicker single-layer OGFC or two-layer OGFC.