4 resultados para Perfect
em Aston University Research Archive
Resumo:
This thesis is concerned with exact solutions of Einstein's field equations of general relativity, in particular, when the source of the gravitational field is a perfect fluid with a purely electric Weyl tensor. General relativity, cosmology and computer algebra are discussed briefly. A mathematical introduction to Riemannian geometry and the tetrad formalism is then given. This is followed by a review of some previous results and known solutions concerning purely electric perfect fluids. In addition, some orthonormal and null tetrad equations of the Ricci and Bianchi identities are displayed in a form suitable for investigating these space-times. Conformally flat perfect fluids are characterised by the vanishing of the Weyl tensor and form a sub-class of the purely electric fields in which all solutions are known (Stephani 1967). The number of Killing vectors in these space-times is investigated and results presented for the non-expanding space-times. The existence of stationary fields that may also admit 0, 1 or 3 spacelike Killing vectors is demonstrated. Shear-free fluids in the class under consideration are shown to be either non-expanding or irrotational (Collins 1984) using both orthonormal and null tetrads. A discrepancy between Collins (1984) and Wolf (1986) is resolved by explicitly solving the field equations to prove that the only purely electric, shear-free, geodesic but rotating perfect fluid is the Godel (1949) solution. The irrotational fluids with shear are then studied and solutions due to Szafron (1977) and Allnutt (1982) are characterised. The metric is simplified in several cases where new solutions may be found. The geodesic space-times in this class and all Bianchi type 1 perfect fluid metrics are shown to have a metric expressible in a diagonal form. The position of spherically symmetric and Bianchi type 1 space-times in relation to the general case is also illustrated.
Resumo:
The efficacy of vaccines can be greatly improved by the addition of adjuvants, which enhance and modify immune responses. Historically, adjuvants have been discovered empirically by using experimental models.
Resumo:
In this paper, we propose to increase residual carrier frequency offset tolerance based on short perfect reconstruction pulse shaping for coherent optical-orthogonal frequency division multiplexing. The proposed method suppresses the residual carrier frequency offset induced penalty at the receiver, without requiring any additional overhead and exhaustive signal processing. The Q-factor improvement contributed by the proposed method is 1.6 dB and 1.8 dB for time-frequency localization maximization and out-of-band energy minimization pulse shapes, respectively. Finally, the transmission span gain under the influence of residual carrier frequency offset is ̃62% with out-of-band energy minimization pulse shape. © 2014 Optical Society of America.
Resumo:
Design methods and tools are generally best learned and developed experientially [1]. Finding appropriate vehicles for delivering these to students is becoming increasingly challenging, especially when considering only those that will enthuse, intrigue and inspire. This paper traces the development of different eco-car design and build projects which competed in the Shell Eco-Marathon. The cars provided opportunities for experiential learning through a formal learning cycle of CDIO (Conceive, Design, Implement, Operate) or the more traditional understand, explore, create, validate, with both teams developing a functional finished prototype. Lessons learned were applied through the design of a third and fourth eco-car using experimental techniques with bio-composites, combining the knowledge of fibre reinforced composite materials and adhesives with the plywood construction techniques of the two teams. The paper discusses the importance of applying materials and techniques to a real world problem. It will also explore how eco-car and comparing traditional materials and construction techniques with high tech composite materials is an ideal teaching, learning and assessment vehicle for technical design techniques.