3 resultados para Patient deterioration
em Aston University Research Archive
Resumo:
Hospitals can experience difficulty in detecting and responding to early signs of patient deterioration leading to late intensive care referrals, excess mortality and morbidity, and increased hospital costs. Our study aims to explore potential indicators of physiological deterioration by the analysis of vital-signs. The dataset used comprises heart rate (HR) measurements from MIMIC II waveform database, taken from six patients admitted to the Intensive Care Unit (ICU) and diagnosed with severe sepsis. Different indicators were considered: 1) generic early warning indicators used in ecosystems analysis (autocorrelation at-1-lag (ACF1), standard deviation (SD), skewness, kurtosis and heteroskedasticity) and 2) entropy analysis (kernel entropy and multi scale entropy). Our preliminary findings suggest that when a critical transition is approaching, the equilibrium state changes what is visible in the ACF1 and SD values, but also by the analysis of the entropy. Entropy allows to characterize the complexity of the time series during the hospital stay and can be used as an indicator of regime shifts in a patient’s condition. One of the main problems is its dependency of the scale used. Our results demonstrate that different entropy scales should be used depending of the level of entropy verified.
Resumo:
Objectives: To conduct an independent evaluation of the first phase of the Health Foundation's Safer Patients Initiative (SPI), and to identify the net additional effect of SPI and any differences in changes in participating and non-participating NHS hospitals. Design: Mixed method evaluation involving five substudies, before and after design. Setting: NHS hospitals in United Kingdom. Participants: Four hospitals (one in each country in the UK) participating in the first phase of the SPI (SPI1); 18 control hospitals. Intervention: The SPI1 was a compound (multicomponent) organisational intervention delivered over 18 months that focused on improving the reliability of specific frontline care processes in designated clinical specialties and promoting organisational and cultural change. Results: Senior staff members were knowledgeable and enthusiastic about SPI1. There was a small (0.08 points on a 5 point scale) but significant (P<0.01) effect in favour of the SPI1 hospitals in one of 11 dimensions of the staff questionnaire (organisational climate). Qualitative evidence showed only modest penetration of SPI1 at medical ward level. Although SPI1 was designed to engage staff from the bottom up, it did not usually feel like this to those working on the wards, and questions about legitimacy of some aspects of SPI1 were raised. Of the five components to identify patients at risk of deterioration - monitoring of vital signs (14 items); routine tests (three items); evidence based standards specific to certain diseases (three items); prescribing errors (multiple items from the British National Formulary); and medical history taking (11 items) - there was little net difference between control and SPI1 hospitals, except in relation to quality of monitoring of acute medical patients, which improved on average over time across all hospitals. Recording of respiratory rate increased to a greater degree in SPI1 than in control hospitals; in the second six hours after admission recording increased from 40% (93) to 69% (165) in control hospitals and from 37% (141) to 78% (296) in SPI1 hospitals (odds ratio for "difference in difference" 2.1, 99% confidence interval 1.0 to 4.3; P=0.008). Use of a formal scoring system for patients with pneumonia also increased over time (from 2% (102) to 23% (111) in control hospitals and from 2% (170) to 9% (189) in SPI1 hospitals), which favoured controls and was not significant (0.3, 0.02 to 3.4; P=0.173). There were no improvements in the proportion of prescription errors and no effects that could be attributed to SPI1 in non-targeted generic areas (such as enhanced safety culture). On some measures, the lack of effect could be because compliance was already high at baseline (such as use of steroids in over 85% of cases where indicated), but even when there was more room for improvement (such as in quality of medical history taking), there was no significant additional net effect of SPI1. There were no changes over time or between control and SPI1 hospitals in errors or rates of adverse events in patients in medical wards. Mortality increased from 11% (27) to 16% (39) among controls and decreased from17%(63) to13%(49) among SPI1 hospitals, but the risk adjusted difference was not significant (0.5, 0.2 to 1.4; P=0.085). Poor care was a contributing factor in four of the 178 deaths identified by review of case notes. The survey of patients showed no significant differences apart from an increase in perception of cleanliness in favour of SPI1 hospitals. Conclusions The introduction of SPI1 was associated with improvements in one of the types of clinical process studied (monitoring of vital signs) and one measure of staff perceptions of organisational climate. There was no additional effect of SPI1 on other targeted issues nor on other measures of generic organisational strengthening.
Resumo:
Acute life-threatening events are mostly predictable in adults and children. Despite real-time monitoring these events still occur at a rate of 4%. This paper describes an automated prediction system based on the feature space embedding and time series forecasting methods of the SpO2 signal; a pulsatile signal synchronised with heart beat. We develop an age-independent index of abnormality that distinguishes patient-specific normal to abnormal physiology transitions. Two different methods were used to distinguish between normal and abnormal physiological trends based on SpO2 behaviour. The abnormality index derived by each method is compared against the current gold standard of clinical prediction of critical deterioration. Copyright © 2013 Inderscience Enterprises Ltd.