8 resultados para Passive millimeter wave

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical millimeter wave generation is realized using dual polarization modes operation from a co-located dual distributed feedback fiber laser configuration. A narrow linewidth optical millimeter wave signal at 32.5 GHz is demonstrated without using complex control mechanism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel architecture for microwave/millimeter-wave signal generation and data modulation using a fiber-grating-based distributed feedback laser has been proposed in this letter. For demonstration, a 155.52-Mb/s data stream on a 16.9-GHz subcarrier has been transmitted and recovered successfully. It has been proved that this technology would be of benefit to future microwave data transmission systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel architecture for microwave/millimeter-wave signal generation and data modulation using a fiber-grating-based distributed feedback laser has been proposed in this letter. For demonstration, a 155.52-Mb/s data stream on a 16.9-GHz subcarrier has been transmitted and recovered successfully. It has been proved that this technology would be of benefit to future microwave data transmission systems. © 2006 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A cost-effective radio over fiber system to up-convert and transmit multigigabit signals at 60 GHz is presented. A low intermediate frequency OFDM signal is used to directly modulate a laser, which is combined with an independent unmodulated laser. The generated millimeter wave frequency can be adjusted by tuning the frequency separation between the lasers. Since no external modulator is required, this technique is low-cost and it is easily integrable in a single chip. In this paper, we present numerical results showing the feasibility of generating an IEEE 802.15.3c compliant 3.5-Gbps 60-GHz OFDM. We show that received signal quality is not limited by the lasers' linewidth but by the relative intensity noise. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes an experimental and analytic study of the effects of magnetic non-linearity and finite length on the loss and field distribution in solid iron due to a travelling mmf wave. In the first half of the thesis, a two-dimensional solution is developed which accounts for the effects of both magnetic non-linearity and eddy-current reaction; this solution is extended, in the second half, to a three-dimensional model. In the two-dimensional solution, new equations for loss and flux/pole are given; these equations contain the primary excitation, the machine parameters and factors describing the shape of the normal B-H curve. The solution applies to machines of any air-gap length. The conditions for maximum loss are defined, and generalised torque/frequency curves are obtained. A relationship between the peripheral component of magnetic field on the surface of the iron and the primary excitation is given. The effects of magnetic non-linearity and finite length are combined analytically by introducing an equivalent constant permeability into a linear three-dimensional analysis. The equivalent constant permeability is defined from the non-linear solution for the two-dimensional magnetic field at the axial centre of the machine to avoid iterative solutions. In the linear three-dimensional analysis, the primary excitation in the passive end-regions of the machine is set equal to zero and the secondary end faces are developed onto the air-gap surface. The analyses, and the assumptions on which they are based, were verified on an experimental machine which consists of a three-phase rotor and alternative solid iron stators, one with copper end rings, and one without copper end rings j the main dimensions of the two stators are identical. Measurements of torque, flux /pole, surface current density and radial power flow were obtained for both stators over a range of frequencies and excitations. Comparison of the measurements on the two stators enabled the individual effects of finite length and saturation to be identified, and the definition of constant equivalent permeability to be verified. The penetration of the peripheral flux into the stator with copper end rings was measured and compared with theoretical penetration curves. Agreement between measured and theoretical results was generally good.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate that the use of in-line nonlinear optical loop mirrors (NOLMs) in dispersion-managed (DM) transmission systems dominated by amplitude noise can achieve passive 2R regeneration of a 40 and 80 Gbit/s RZ data stream. This is an indication that the use of this approach could obviate the need for full-regeneration in high data rate, strong DM systems, when intra-channel four-wave mixing poses serious problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have proposed and demonstrated a nonlinear polarization-rotation-based fiber laser with two different operation states: passive mode-locking and multiwavelength emission. The intensity-dependent transmission or loss induced by nonlinear polarization rotation accounts for the distinct operation regimes. Our experiment results indicate that both passively mode-locked pulses and continuous-wave multiwavelength can be generated from the same fiber laser just through adjusting polarizations. Another characteristic of the current multiwavelength laser is that the used periodic filter is a birefringence fiber filter, which facilitates all-fiber integration of the fiber laser, so it is a potential multifunction laser source with all-fiber configuration and convenient manipulation. © 2008 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have proposed and demonstrated a nonlinear polarization-rotation-based fiber laser with two different operation states: passive mode-locking and multiwavelength emission. The intensity-dependent transmission or loss induced by nonlinear polarization rotation accounts for the distinct operation regimes. Our experiment results indicate that both passively mode-locked pulses and continuous-wave multiwavelength can be generated from the same fiber laser just through adjusting polarizations. Another characteristic of the current multiwavelength laser is that the used periodic filter is a birefringence fiber filter, which facilitates all-fiber integration of the fiber laser, so it is a potential multifunction laser source with all-fiber configuration and convenient manipulation. © 2008 IEEE.