4 resultados para Particulate Reinforcement

em Aston University Research Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A study of the influence of SiC-particulate reinforcement on ageing and subsequent fatigue crack growth resistance in a powder metallurgy 8090 aluminium alloy-SiC composite has been made. Macroscopic hardness measurements revealed that ageing at 170°C in the composite is accelerated with respect to the unreinforced alloy, though TEM studies indicate that this is not due to the enhanced precipitation of S′. Fatigue crack growth rates in the naturally aged condition of the composite and unreinforced matrix are similar at low to medium values of ΔK, but diverge above ≈ 8 MPa√m owing to the lower fracture toughness of the composite. As a result of the presence of the reinforcement, planar slip in the composite is suppressed and facetted crack growth is not observed. Ageing at or above 170°C has a deleterious effect on fatigue crack growth. Increased ageing time decreases the roughness of the fracture path at higher growth rates. These effect are though to be due to microstructural changes occurring at or near to the SiC/matrix interfaces, providing sites for static mode failure mechanisms to operate. This suggestion is supported by the observation that as ΔK increases, crack growth rates become Kmax dependent, implying the crack growth rate is strongly influenced by static modes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The fatigue behaviour in SiC-particulate-reinforced aluminium alloy composites has been briefly reviewed. The improved fatigue life reported in stress-controlled test results from the higher stiffness of the composites; therefore it is generally inferior to monolithic alloys at a constant strain level. The role of SiC particulate reinforcement has been examined for fatigue crack initiation, short-crack growth and long-crack growth. Crack initiation is observed to occur at matrix-SiC interface in cast composites and either at or near the matrix-SiC interface or at cracked SiC particles in powder metallurgy processed composites depending on particle size and morphology. The da/dN vs ΔK relationship in the composites is characterized by crack growth rates existing within a narrow range of ΔK and this is because of the lower fracture toughness and relatively high threshold values in composites compared with those in monolithic alloys. An enhanced Paris region slope attributed to the monotonic fracture contribution are reported and the extent of this contribution is found to depend on particle size. The effects of the aging condition on crack growth rates and particle size dependence of threshold values are also treated in this paper. © 1991.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A study has been made of the influence of the reinforcement/matrix interfacial strength on fatigue crack propagation in a powder metallurgy aluminum alloy 8090-SiC particulate composite. The interfacial region has been altered by two separate routes, the first involving aging of the 8090 matrix, with the subsequent formation of precipitate free zones at the boundaries, and the second consisting of oxidizing the surface of the SiC particles before their incorporation into the composite. In the naturally aged condition, oxidation of the SiC leads to a reduction in fatigue crack growth resistance at higher values of stress intensity range ΔK. This is due to a proportion of the crack growth occurring through voids formed in association with many of the weak SiC interfaces which have retained a layer of thick surface oxide after processing. On overaging no difference in crack growth rate is discernible between the oxidized and unoxidized SiC composites. It is proposed that this is due to similar levels of interfacial weakening having occurred in both composites, indicating that this is an important factor in the reduction of the high ΔK crack growth resistance of the unoxidized SiC composite on aging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of residual stresses, induced by cold water quenching, on the morphology of fatigue crack fronts has been investigated in a powder metallurgy 8090 aluminium alloy, with and without reinforcement in the form of 20 wt-%SiC particles. Residual stress measurements reveal that the surface compressive stresses developed in these materials are significantly greater than in conventional metallurgy ingot 8090, because surface yielding occurs on quenching. The yield stresses of the powder route materials are greater than those of ingot produced 8090 and hence greater surface stresses can be maintained. In fatigue, severe crack front bowing is observed in the powder formed materials as a result of the reduction of the R ratio (minimum load/maximum load) by the compressive residual stresses at the sides of the specimen, causing premature crack closure and hence reducing the local driving force for fatigue crack growth ΔKeff. This distortion of the crack fronts introduces large errors into measurements of crack growth rate and threshold values of ΔK.