12 resultados para Partial Equilibrium models
em Aston University Research Archive
Resumo:
This paper analyses the mechanisms through which profit-sharing schemes may induce debt constrained firms to improve technical efficiency over time to guarantee positive profits. This hypothesis is first formalised in a partial equilibrium framework and then is tested on a sample of Italian traditional and cooperative firms. Technical efficiency change indexes are computed by DEA. These are regressed on a measure of finance constraints to analyse their impact on firms’ efficiency growth. The results support the hypothesis that a restriction in the availability of financial resources can affect positively the growth in efficiency in firms with profit-sharing schemes.
Resumo:
This paper tries to identify under which conditions increasing market competition may help cooperatives to improve technical efficiency to guarantee positive profits. This hypothesis is first formalized in a partial equilibrium framework and then is tested on a sample of Italian conventional and cooperative firms, using frontier analysis. Technical efficiency indexes are computed by using the one-stage approach as suggested by Battese and Coelli (1995), where proxies for competition are introduced as determinants of efficiency, along with other exogenous factors accounting for the firms’ heterogeneity. However, the overall impact of increasing competition on efficiency is negative.
Resumo:
We use two general equilibrium models to explain why changes in the external economic environment result in pro-cyclical aggregate dividend payout behavior. Both models that we consider endogenize low elasticity of investment. The first model incorporates capital adjustment costs, while the second one assumes that risk-averse managers maximize their own objective function rather than shareholder wealth. We show that, while both models generate pro-cyclical aggregate dividends, a feature consistent with the observed business-cycle pattern of payouts from well-diversified portfolios, the second model provides a more likely explanation for this effect. Our findings emphasize the importance of incorporating agency conflicts when considering the relationship between the external economic environment and the financial behavior of businesses.
Resumo:
Methods for understanding classical disordered spin systems with interactions conforming to some idealized graphical structure are well developed. The equilibrium properties of the Sherrington-Kirkpatrick model, which has a densely connected structure, have become well understood. Many features generalize to sparse Erdös- Rényi graph structures above the percolation threshold and to Bethe lattices when appropriate boundary conditions apply. In this paper, we consider spin states subject to a combination of sparse strong interactions with weak dense interactions, which we term a composite model. The equilibrium properties are examined through the replica method, with exact analysis of the high-temperature paramagnetic, spin-glass, and ferromagnetic phases by perturbative schemes. We present results of replica symmetric variational approximations, where perturbative approaches fail at lower temperature. Results demonstrate re-entrant behaviors from spin glass to ferromagnetic phases as temperature is lowered, including transitions from replica symmetry broken to replica symmetric phases. The nature of high-temperature transitions is found to be sensitive to the connectivity profile in the sparse subgraph, with regular connectivity a discontinuous transition from the paramagnetic to ferromagnetic phases is apparent.
Resumo:
We study the dynamics of a growing crystalline facet where the growth mechanism is controlled by the geometry of the local curvature. A continuum model, in (2+1) dimensions, is developed in analogy with the Kardar-Parisi-Zhang (KPZ) model is considered for the purpose. Following standard coarse graining procedures, it is shown that in the large time, long distance limit, the continuum model predicts a curvature independent KPZ phase, thereby suppressing all explicit effects of curvature and local pinning in the system, in the "perturbative" limit. A direct numerical integration of this growth equation, in 1+1 dimensions, supports this observation below a critical parametric range, above which generic instabilities, in the form of isolated pillared structures lead to deviations from standard scaling behaviour. Possibilities of controlling this instability by introducing statistically "irrelevant" (in the sense of renormalisation groups) higher ordered nonlinearities have also been discussed.
Resumo:
Spectral and coherence methodologies are ubiquitous for the analysis of multiple time series. Partial coherence analysis may be used to try to determine graphical models for brain functional connectivity. The outcome of such an analysis may be considerably influenced by factors such as the degree of spectral smoothing, line and interference removal, matrix inversion stabilization and the suppression of effects caused by side-lobe leakage, the combination of results from different epochs and people, and multiple hypothesis testing. This paper examines each of these steps in turn and provides a possible path which produces relatively ‘clean’ connectivity plots. In particular we show how spectral matrix diagonal up-weighting can simultaneously stabilize spectral matrix inversion and reduce effects caused by side-lobe leakage, and use the stepdown multiple hypothesis test procedure to help formulate an interaction strength.
Resumo:
Levels of lignin and hydroxycinnamic acid wall components in three genera of forage grasses (Lolium,Festuca and Dactylis) have been accurately predicted by Fourier-transform infrared spectroscopy using partial least squares models correlated to analytical measurements. Different models were derived that predicted the concentrations of acid detergent lignin, total hydroxycinnamic acids, total ferulate monomers plus dimers, p-coumarate and ferulate dimers in independent spectral test data from methanol extracted samples of perennial forage grass with accuracies of 92.8%, 86.5%, 86.1%, 59.7% and 84.7% respectively, and analysis of model projection scores showed that the models relied generally on spectral features that are known absorptions of these compounds. Acid detergent lignin was predicted in samples of two species of energy grass, (Phalaris arundinacea and Pancium virgatum) with an accuracy of 84.5%.
Resumo:
The scaling problems which afflict attempts to optimise neural networks (NNs) with genetic algorithms (GAs) are disclosed. A novel GA-NN hybrid is introduced, based on the bumptree, a little-used connectionist model. As well as being computationally efficient, the bumptree is shown to be more amenable to genetic coding lthan other NN models. A hierarchical genetic coding scheme is developed for the bumptree and shown to have low redundancy, as well as being complete and closed with respect to the search space. When applied to optimising bumptree architectures for classification problems the GA discovers bumptrees which significantly out-perform those constructed using a standard algorithm. The fields of artificial life, control and robotics are identified as likely application areas for the evolutionary optimisation of NNs. An artificial life case-study is presented and discussed. Experiments are reported which show that the GA-bumptree is able to learn simulated pole balancing and car parking tasks using only limited environmental feedback. A simple modification of the fitness function allows the GA-bumptree to learn mappings which are multi-modal, such as robot arm inverse kinematics. The dynamics of the 'geographic speciation' selection model used by the GA-bumptree are investigated empirically and the convergence profile is introduced as an analytical tool. The relationships between the rate of genetic convergence and the phenomena of speciation, genetic drift and punctuated equilibrium arc discussed. The importance of genetic linkage to GA design is discussed and two new recombination operators arc introduced. The first, linkage mapped crossover (LMX) is shown to be a generalisation of existing crossover operators. LMX provides a new framework for incorporating prior knowledge into GAs.Its adaptive form, ALMX, is shown to be able to infer linkage relationships automatically during genetic search.
Resumo:
Context/Motivation - Different modeling techniques have been used to model requirements and decision-making of self-adaptive systems (SASs). Specifically, goal models have been prolific in supporting decision-making depending on partial and total fulfilment of functional (goals) and non-functional requirements (softgoals). Different goalrealization strategies can have different effects on softgoals which are specified with weighted contribution-links. The final decision about what strategy to use is based, among other reasons, on a utility function that takes into account the weighted sum of the different effects on softgoals. Questions/Problems - One of the main challenges about decisionmaking in self-adaptive systems is to deal with uncertainty during runtime. New techniques are needed to systematically revise the current model when empirical evidence becomes available from the deployment. Principal ideas/results - In this paper we enrich the decision-making supported by goal models by using Dynamic Decision Networks (DDNs). Goal realization strategies and their impact on softgoals have a correspondence with decision alternatives and conditional probabilities and expected utilities in the DDNs respectively. Our novel approach allows the specification of preferences over the softgoals and supports reasoning about partial satisfaction of softgoals using probabilities. We report results of the application of the approach on two different cases. Our early results suggest the decision-making process of SASs can be improved by using DDNs. © 2013 Springer-Verlag.
Resumo:
The accurate identification of T-cell epitopes remains a principal goal of bioinformatics within immunology. As the immunogenicity of peptide epitopes is dependent on their binding to major histocompatibility complex (MHC) molecules, the prediction of binding affinity is a prerequisite to the reliable prediction of epitopes. The iterative self-consistent (ISC) partial-least-squares (PLS)-based additive method is a recently developed bioinformatic approach for predicting class II peptide−MHC binding affinity. The ISC−PLS method overcomes many of the conceptual difficulties inherent in the prediction of class II peptide−MHC affinity, such as the binding of a mixed population of peptide lengths due to the open-ended class II binding site. The method has applications in both the accurate prediction of class II epitopes and the manipulation of affinity for heteroclitic and competitor peptides. The method is applied here to six class II mouse alleles (I-Ab, I-Ad, I-Ak, I-As, I-Ed, and I-Ek) and included peptides up to 25 amino acids in length. A series of regression equations highlighting the quantitative contributions of individual amino acids at each peptide position was established. The initial model for each allele exhibited only moderate predictivity. Once the set of selected peptide subsequences had converged, the final models exhibited a satisfactory predictive power. Convergence was reached between the 4th and 17th iterations, and the leave-one-out cross-validation statistical terms - q2, SEP, and NC - ranged between 0.732 and 0.925, 0.418 and 0.816, and 1 and 6, respectively. The non-cross-validated statistical terms r2 and SEE ranged between 0.98 and 0.995 and 0.089 and 0.180, respectively. The peptides used in this study are available from the AntiJen database (http://www.jenner.ac.uk/AntiJen). The PLS method is available commercially in the SYBYL molecular modeling software package. The resulting models, which can be used for accurate T-cell epitope prediction, will be made freely available online (http://www.jenner.ac.uk/MHCPred).
Resumo:
Motivation: The immunogenicity of peptides depends on their ability to bind to MHC molecules. MHC binding affinity prediction methods can save significant amounts of experimental work. The class II MHC binding site is open at both ends, making epitope prediction difficult because of the multiple binding ability of long peptides. Results: An iterative self-consistent partial least squares (PLS)-based additive method was applied to a set of 66 pep- tides no longer than 16 amino acids, binding to DRB1*0401. A regression equation containing the quantitative contributions of the amino acids at each of the nine positions was generated. Its predictability was tested using two external test sets which gave r pred =0.593 and r pred=0.655, respectively. Furthermore, it was benchmarked using 25 known T-cell epitopes restricted by DRB1*0401 and we compared our results with four other online predictive methods. The additive method showed the best result finding 24 of the 25 T-cell epitopes. Availability: Peptides used in the study are available from http://www.jenner.ac.uk/JenPep. The PLS method is available commercially in the SYBYL molecular modelling software package. The final model for affinity prediction of peptides binding to DRB1*0401 molecule is available at http://www.jenner.ac.uk/MHCPred. Models developed for DRB1*0101 and DRB1*0701 also are available in MHC- Pred
Resumo:
A new 3D implementation of a hybrid model based on the analogy with two-phase hydrodynamics has been developed for the simulation of liquids at microscale. The idea of the method is to smoothly combine the atomistic description in the molecular dynamics zone with the Landau-Lifshitz fluctuating hydrodynamics representation in the rest of the system in the framework of macroscopic conservation laws through the use of a single "zoom-in" user-defined function s that has the meaning of a partial concentration in the two-phase analogy model. In comparison with our previous works, the implementation has been extended to full 3D simulations for a range of atomistic models in GROMACS from argon to water in equilibrium conditions with a constant or a spatially variable function s. Preliminary results of simulating the diffusion of a small peptide in water are also reported.