2 resultados para Para magnetism
em Aston University Research Archive
Resumo:
A new challenge in the field of molecular magnetism is the design of optically and thermally switchable solid state magnetic materials for which various kinds of application may be feasible. Our research activities involve preparative methods, the study of the physical properties and associated mechanisms, as well as the exploration of further possibilities. Particular focus is on heterobimetallic Prussian Blue analogs, such as on RbMn[Fe(CN)6], in which the interplay between the two different adjacent metal ions is crucial for the observation of photo-induced phenomena. Our studies revealed that modification of the preparative conditions lead to differences in structural features that allowed tuning of the magnetic and electron transfer properties of RbxMn[Fe(CN)6]y.zH2O.
Resumo:
A great deal of attention has recently been focused on a new class of smart materials-so-called left-handed media-that exhibit highly unusual electromagnetic properties and promise new device applications. Left-handed materials require negative permeability ν, an extreme condition that has so far been achieved only for frequencies in the microwave to terahertz range. Extension of the approach described in ref. 7 to achieve the necessary high-frequency magnetic response in visible optics presents a formidable challenge, as no material-natural or artificial-is known to exhibit any magnetism at these frequencies. Here we report a nanofabricated medium consisting of electromagnetically coupled pairs of gold dots with geometry carefully designed at a 10-nm level. The medium exhibits a strong magnetic response at visible-light frequencies, including a band with negative ν. The magnetism arises owing to the excitation of an antisymmetric plasmon resonance. The high-frequency permeability qualitatively reveals itself via optical impedance matching. Our results demonstrate the feasibility of engineering magnetism at visible frequencies and pave the way towards magnetic and left-handed components for visible optics. © 2005 Nature Publishing Group.