14 resultados para Pancreatic Elastase

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weight loss in advanced cancer patients is refractory to conventional nutritional support. This may be due to metabolic changes mediated by proinflammatory cytokines, hormones, and tumor-derived products. We previously showed that a nutritional supplement enriched with fish oil will reverse weight loss in patients with pancreatic cancer cachexia. The present study examines the effect of this supplement on a number of mediators thought to play a role in cancer cachexia. Twenty weight-losing patients with pancreatic cancer were asked to consume a nutritional supplement providing 600 kcal and 2 g of eicosapentaenoic acid per day. At baseline and after 3 wk, patients were weighed and samples were collected to measure serum concentrations of interleukin (IL)-6 and its soluble receptor tumor necrosis factor receptors I and II, cortisol, insulin, and leptin, peripheral blood mononuclear cell production of IL-1 beta, IL-6, and tumor necrosis factor, and urinary excretion of proteolysis inducing factor. After 3 wk of consumption of the fish oil-enriched nutritional supplement, there was a significant fall in production of IL-6 (from median 16.5 to 13.7 ng/ml, P = 0.015), a rise in serum insulin concentration (from 3.3 to 5.0 mU/l, P = 0.0064), a fall in the cortisol-to-insulin ratio (P = 0.0084), and a fall in the proportion of patients excreting proteolysis inducing factor (from 88% to 40%, P = 0.008). These changes occurred in association with weight gain (median 1 kg, P = 0.024). Various mediators of catabolism in cachexia are modulated by administration of a fish oil-enriched nutritional supplement in pancreatic cancer patients. This may account for the reversal of weight loss in patients consuming this supplement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic systemic immunosuppression in cell replacement therapy restricts its clinical application. This study sought to explore the potential of cell-based immune modulation as an alternative to immunosuppressive drug therapy in the context of pancreatic islet transplantation. Human amniotic epithelial cells (AEC) possess innate anti-inflammatory and immunosuppressive properties that were utilized to create localized immune privilege in an in vitro islet cell culture system. Cellular constructs composed of human islets and AEC (islet/AEC) were bioengineered under defined rotational cell culture conditions. Insulin secretory capacity was validated by glucose challenge and immunomodulatory potential characterized using a peripheral blood lymphocyte (PBL) proliferation assay. Results were compared to control constructs composed of islets or AEC cultured alone. Studies employing AEC-conditioned medium examined the role of soluble factors, and fluorescence immunocytochemistry was used to identify putative mediators of the immunosuppressive response in isolated AEC monocultures. Sustained, physiologically appropriate insulin secretion was observed in both islets and islet/AEC constructs. Activation of resting PBL proliferation occurred on exposure to human islets alone but this response was significantly (p <0.05) attenuated by the presence of AEC and AEC-conditioned medium. Mitogen (phytohaemagglutinin, 5 µg/ml)-induced PBL proliferation was sustained on contact with isolated islets but abrogated by AEC, conditioned medium, and the islet/AEC constructs. Immunocytochemical analysis of AEC monocultures identified a subpopulation of cells that expressed the proapoptosis protein Fas ligand. This study demonstrates that human islet/AEC constructs exhibit localized immunosuppressive properties with no impairment of ß-cell function. The data suggest that transplanted islets may benefit from the immune privilege status conferred on them as a consequence of their close proximity to human AEC. Such an approach may reduce the need for chronic systemic immunosuppression, thus making islet transplantation a more attractive treatment option for the management of insulin-dependent diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of the adipocyte-derived factor visfatin in metabolism remains controversial, although some pancreatic ß-cell-specific effects have been reported. This study investigated the effects of visfatin upon insulin secretion, insulin receptor activation and mRNA expression of key diabetes-related genes in clonal mouse pancreatic ß-cells. ß-TC6 cells were cultured in RPMI 1640 and were subsequently treated with recombinant visfatin. One-hour static insulin secretion was measured by ELISA. Phospho-specific ELISA and western blotting were used to detect insulin receptor activation. Real-time SYBR Green PCR array technology was used to measure the expression of 84 diabetes-related genes in both treatment and control cells. Incubation with visfatin caused significant changes in the mRNA expression of several key diabetes-related genes, including marked up-regulation of insulin (9-fold increase), hepatocyte nuclear factor (HNF)1ß (32-fold increase), HNF4a (16-fold increase) and nuclear factor ?B (40-fold increase). Significant down-regulation was seen in angiotensin-converting enzyme (-3.73-fold) and UCP2 (-1.3-fold). Visfatin also caused a significant 46% increase in insulin secretion compared to control (P<0.003) at low glucose, and this increase was blocked by co-incubation with the specific nicotinamide phosphoribosyltransferase inhibitor FK866. Both visfatin and nicotinamide mononucleotide induced activation of both insulin receptor and extracellular signal-regulated kinase (ERK)1/2, with visfatin-induced insulin receptor/ERK1/2 activation being inhibited by FK866. We conclude that visfatin can significantly regulate insulin secretion, insulin receptor phosphorylation and intracellular signalling and the expression of a number of ß-cell function-associated genes in mouse ß-cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims/hypothesis - Loss of the trophic support provided by surrounding non-endocrine pancreatic cell populations underlies the decline in beta cell mass and insulin secretory function observed in human islets following isolation and culture. This study sought to determine whether restoration of regulatory influences mediated by ductal epithelial cells promotes sustained beta cell function in vitro. Methods - Human islets were isolated according to existing protocols. Ductal epithelial cells were harvested from the exocrine tissue remaining after islet isolation, expanded in monolayer culture and characterised using fluorescence immunocytochemistry. The two cell types were co-cultured under conventional static culture conditions or within a rotational cell culture system. The effect of co-culture on islet structural integrity, beta cell mass and insulin secretory capacity was observed for 10 days following isolation. Results - Human islets maintained under conventional culture conditions exhibited a characteristic loss in structural integrity and functional viability as indicated by a diminution of glucose responsiveness. By contrast, co-culture of islets with ductal epithelial cells led to preserved islet morphology and sustained beta cell function, most evident in co-cultures held within the rotational cell culture system, which showed a significantly (p<0.05) greater insulin secretory response to elevated glucose compared with control islets. Similarly, insulin/protein ratio data suggested that the presence of ductal epithelial cells is beneficial for the maintenance of beta cell mass. Conclusions/interpretation - The data indicate a supportive role for ductal epithelial cells in islet viability. Further characterisation of the regulatory influences may lead to novel strategies to improve long-term beta cell function both in vitro and following islet transplantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type 2 diabetes (T2D) is characterized by impaired beta cell function and insulin resistance. T2D susceptibility genes identified by Genome-wide association studies (GWAS) are likely to have roles in both impaired insulin secretion from the beta cell as well as insulin resistance. The aim of this study was to use gene expression profiling to assess the effect of the diabetic milieu on the expression of genes involved in both insulin secretion and insulin resistance. We measured the expression of 43 T2D susceptibility genes in the islets, adipose and liver of leptin-deficient Ob/Ob mice compared with Ob/+ littermates. The same panel of genes were also profiled in cultured rodent adipocytes, hepatocytes and beta cells in response to high glucose conditions, to distinguish expression effects due to elevated glycemia from those on the causal pathway to diabetes or induced by other factors in the diabetic microenviroment. We found widespread deregulation of these genes in tissues from Ob/Ob mice, with differential regulation of 23 genes in adipose, 18 genes in liver and one gene (Tcf7l2) in islets of diabetic animals (Ob/Ob) compared to control (Ob/+) animals. However, these expression changes were in most cases not noted in glucose-treated adipocyte, hepatocyte or beta cell lines, indicating that they may not be an effect of hyperglycemia alone. This study indicates that expression changes are apparent with diabetes in both the insulin producing beta cells, but also in peripheral tissues involved in insulin resistance. This suggests that incidence or progression of diabetic phenotypes in a mouse model of diabetes is driven by both secretory and peripheral defects. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart New York.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background - Carbon monoxide, the gaseous product of heme oxygenase, is a signalling molecule with a broad spectrum of biological activities. The aim of this study was to investigate the effects of carbon monoxide on proliferation of human pancreatic cancer. Methods - In vitro studies were performed on human pancreatic cancer cells (CAPAN-2, BxPc3, and PaTu-8902) treated with a carbon monoxide-releasing molecule or its inactive counterpart, or exposed to carbon monoxide gas (500 ppm/24 h). For in vivo studies, pancreatic cancer cells (CAPAN-2/PaTu-8902) were xenotransplanted subcutaneously into athymic mice, subsequently treated with carbon monoxide-releasing molecule (35 mg/kg b.w. i.p./day), or exposed to safe doses of carbon monoxide (500 ppm 1 h/day; n = 6 in each group). Results - Both carbon monoxide-releasing molecule and carbon monoxide exposure significantly inhibited proliferation of human pancreatic cancer cells (p < 0.05). A substantial decrease in Akt phosphorylation was observed in carbon monoxide-releasing molecule compared with inactive carbon monoxide-releasing molecule treated cancer cells (by 30–50%, p < 0.05). Simultaneously, carbon monoxide-releasing molecule and carbon monoxide exposure inhibited tumour proliferation and microvascular density of xenotransplanted tumours (p < 0.01), and doubled the survival rates (p < 0.005). Exposure of mice to carbon monoxide led to an almost 3-fold increase in carbon monoxide content in tumour tissues (p = 0.006). Conclusion - These data suggest a new biological function for carbon monoxide in carcinogenesis, and point to the potential chemotherapeutic/chemoadjuvant use of carbon monoxide in pancreatic cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adipocyte derived peptide hormone leptin is known to regulate apoptosis and cell viability in several cells and tissues, as well as having several pancreatic islet beta-cell specific effects such as inhibition of glucose-stimulated insulin secretion. This study investigated the effects of leptin upon apoptosis induced by serum depletion and on expression of the apoptotic regulators B-cell leukaemia 2 gene product (BCL-2) and BCL2-associated X protein (Bax) in the glucose-responsive BRIN-BD11 beta-cell line.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adipokine resistin is known to induce insulin resistance in rodent tissues. Increases in adipose tissue mass are known to have a negative effect on pancreatic beta-cell function, although the mechanisms are poorly understood. This study investigated the effects of resistin on insulin secretion, insulin receptor expression and cell viability in pancreatic beta-cells. BTC-6 or BRIN-BD11 cells were treated for 24h with resistin, and insulin receptor expression, insulin secretion and cell viability were measured. Incubation with 40ng/ml resistin caused significant decreases in insulin receptor mRNA and protein expression, but did not affect insulin secretion. At low concentrations, resistin caused significant increases in cell viability. These data implicate resistin as a factor that may regulate beta-cell function/viability, and suggests a potential mechanism by which increased adiposity causes beta-cell dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The resolution of inflammation is dependent on recognition and phagocytic removal of apoptotic cells by macrophages. Receptors for apoptotic cells are sensitive to degradation by human neutrophil elastase (HNE). We show in the present study that HNE cleaves macrophage cell surface CD14 and in so doing, reduces phagocytic recognition of apoptotic lymphocytic cells (Mutu 1). Using an improved method of adenovirus-mediated transfection of macrophages with the HNE inbibitor elafin, we demonstrate that elafin overexpression prevents CD14 cleavage and restores apoptotic cell recognition by macrophages. This approach of genetic modification of macrophages could be used to restore apoptotic cell recognition in inflammatory conditions. (C) 2004 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Carbon monoxide, the gaseous product of heme oxygenase, is a signalling molecule with a broad spectrum of biological activities. The aim of this study was to investigate the effects of carbon monoxide on proliferation of human pancreatic cancer. Methods: In vitro studies were performed on human pancreatic cancer cells (CAPAN-2, BxPc3, and PaTu-8902) treated with a carbon monoxide-releasing molecule or its inactive counterpart, or exposed to carbon monoxide gas (500. ppm/24. h). For in vivo studies, pancreatic cancer cells (CAPAN-2/PaTu-8902) were xenotransplanted subcutaneously into athymic mice, subsequently treated with carbon monoxide-releasing molecule (35. mg/kg b.w. i.p./day), or exposed to safe doses of carbon monoxide (500. ppm 1. h/day; n=. 6 in each group). Results: Both carbon monoxide-releasing molecule and carbon monoxide exposure significantly inhibited proliferation of human pancreatic cancer cells (p<0.05). A substantial decrease in Akt phosphorylation was observed in carbon monoxide-releasing molecule compared with inactive carbon monoxide-releasing molecule treated cancer cells (by 30-50%, p<. 0.05). Simultaneously, carbon monoxide-releasing molecule and carbon monoxide exposure inhibited tumour proliferation and microvascular density of xenotransplanted tumours (p<0.01), and doubled the survival rates (p<0.005). Exposure of mice to carbon monoxide led to an almost 3-fold increase in carbon monoxide content in tumour tissues (p=0.006). Conclusion: These data suggest a new biological function for carbon monoxide in carcinogenesis, and point to the potential chemotherapeutic/chemoadjuvant use of carbon monoxide in pancreatic cancer. © 2013 Editrice Gastroenterologica Italiana S.r.l.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluates the antidiabetic potential of an enzyme-resistant analog, (Val8)GLP-1. The effects of daily administration of a novel dipeptidyl peptidase IV-resistant glucagon-like peptide-1 (GLP-1) analog, (Val8)GLP-1, on glucose tolerance and pancreatic β-cell function were examined in obese-diabetic (ob/ob) mice. Acute intraperitoneal administration of (Val8)GLP-1 (6.25-25 nmol/kg) with glucose increased the insulin response and reduced the glycemic excursion in a dose-dependent manner. The effects of (Val8)GLP-1 were greater and longer lasting than native GLP-1. Once-daily subcutaneous administration of (Val8)GLP-1 (25 nmol/kg) for 21 days reduced plasma glucose concentrations, increased plasma insulin, and reduced body weight more than native GLP-1 without a significant change in daily food intake. Furthermore, (Val8)GLP-1 improved glucose tolerance, reduced the glycemic excursion after feeding, increased the plasma insulin response to glucose and feeding, and improved insulin sensitivity. These effects were consistently greater with (Val8)GLP-1 than with native GLP-1, and both peptides retained or increased their acute efficacy compared with initial administration. (Val8)GLP-1 treatment increased average islet area 1.2-fold without changing the number of islets, resulting in an increased number of larger islets. These data demonstrate that (Val8)GLP-1 is more effective and longer acting than native GLP-1 in obese-diabetic ob/ob mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colon and pancreatic cancers contribute to 90,000 deaths each year in the USA. These cancers lack targeted therapeutics due to heterogeneity of the disease and multiple causative factors. One important factor that contributes to increased colon and pancreatic cancer risk is gastrin. Gastrin mediates its actions through two G-protein coupled receptors (GPCRs): cholecystokinin receptor A (CCK-A) and CCK-B/gastrin receptor. Previous studies have indicated that colon cancer predominantly expresses CCK-A and responds to CCK-A isoform antagonists. However, many CCK-A antagonists have failed in the clinic due to poor pharmacokinetic properties or lack of efficacy. In the present study, we synthesized a library of CCK-A isoform-selective antagonists and tested them in various colon and pancreatic cancer preclinical models. The lead CCK-A isoform, selective antagonist PNB-028, bound to CCK-A at 12 nM with a 60-fold selectivity towards CCK-A over CCK-B. Furthermore, it inhibited the proliferation of CCK-A-expressing colon and pancreatic cancer cells without affecting the proliferation of non-cancerous cells. PNB-028 was also extremely effective in inhibiting the growth of MAC-16 and LoVo colon cancer and MIA PaCa pancreatic cancer xenografts in immune-compromised mice. Genomewide microarray and kinase-array studies indicate that PNB-028 inhibited oncogenic kinases and angiogenic factors to inhibit the growth of colon cancer xenografts. Safety pharmacology and toxicology studies have indicated that PNB-028 is extremely safe and has a wide safety margin. These studies suggest that targeting CCK-A selectively renders promise to treat colon and pancreatic cancers and that PNB-028 could become the next-generation treatment option.