8 resultados para Pads
em Aston University Research Archive
Resumo:
SUMMARY A study has been made of the coalescence of secondary dispersions in a fibrous bed. The literature pertaining to the formation, hydrodynamic behaviour and methods of separation of droplets less than one hundred micrometres in diameter has been reviewed with particular reference to fibrous bed coalescers. The main operating parameters were identified as inlet drop size distribution, phase ratio, superficial velocity and the thickness and voidage of the bed . A recirculatory rig with interchangeable fibrous bed pads was designed and operated with toluene-water dispersions generated by a combination of centrifugal pumps . Inlet drop sizes were analysed using a Coulter Counter and outlet drops were sized photographically. A novel technique, involving conductivity measur ements at different planes in the bed, was developed to measure hold up distribution. Single phase flow and two phase flow pressure drops were correlated by a Blake-Kozeny type equation. Exit drop size was independent of inlet drop size distribution and phase ratio but a function of superficialvelocity and packing thickness. Average bed hold up was independent of inlet drop size distribution and phase ratio, but decreased with increase in superficial velocity. Hold up was not evenly distributed in the bed, the highest value occurred at the inlet followed by a sharp -2 drop at approximately 1.2 x 10 m. Hold up remained constant throughout the rest of the bed until the exit plane, where it increased. From the results, a mechanism is postulated involving: (a) Capture of the inlet drops followed by interdrop coalescence until an equilibrium value is reached. (b) Equilibrium size droplets flowing as rivulets through the intermediate portion of the bed, and (c) Each rivulet forms droplets at the exit face, which detach by a 'drip point' mechanism.
Resumo:
OBJECTIVE: To estimate the prevalence and severity of postcesarean pelvic dysfunction. STUDY DESIGN: Using biopsychosocial interviewing at home, 184 postcesarean primiparas were compared to 100 vaginally delivered women regarding symptoms of stress incontinence, anal incontinence and dyspareunia. Delivery details were confirmed from medical records. RESULTS: Comparison of postcesarean vs. vaginally delivered women revealed stress incontinence in 33% vs. 54% and dyspareunia in 27% vs. 46%, both differences reaching statistical significance, unlike anal incontinence, which was manifest in 51% vs. 44%. When compared to emergency cesarean the relative risk of stress incontinence following an elective cesarean was 0.99 (0.71, 1.39), of dyspareunia 1.02 and of anal incontinence 1.05, indicating no statistically significant difference. Thirty (22%) stress incontinent and 4 (3%) fecally incontinent mothers used pads continuously, suggesting severe physical morbidity. Severe dysphoria (depression) was expressed by 41 (35%) stress incontinent mothers, 38 (30%) with dyspareunia and 34 (26%) with anal incontinence; the association of severe dysphoria with dyspareunia was statistically significant (OR = 2.504 [1.362, 4.602]). Few women came forward to seek help. CONCLUSION: Pelvic dysfunction was similar after elective or emergency cesarean. Compared to vaginal delivery, postcesarean stress incontinence and dyspareunia were less frequent but biopsychosocial morbidity could be severe.
Resumo:
This study is primarily concerned with the problem of break-squeal in disc brakes, using moulded organic disc pads. Moulded organic friction materials are complex composites and due to this complexity it was thought that they are unlikely to be of uniform composition. Variation in composition would under certain conditions of the braking system, cause slight changes in its vibrational characteristics thus causing resonance in the high audio-frequency range. Dynamic mechanical propertes appear the most likely parameters to be related to a given composition's tendency to promote squeal. Since it was necessary to test under service conditions a review was made of all the available commercial test instruments but as none were suitable it was necessary to design and develop a new instrument. The final instrument design, based on longitudinal resonance, enabled modulus and damping to be determined over a wide range of temperatures and frequencies. This apparatus has commercial value since it is not restricted to friction material testing. Both used and unused pads were tested and although the cause of brake squeal was not definitely established, the results enabled formulation of a tentative theory of the possible conditions for brake squeal. The presence of a temperature of minimum damping was indicated which may be of use to braking design engineers. Some auxilIary testing was also performed to establish the effect of water, oil and brake fluid and also to determine the effect of the various components of friction materials.
Resumo:
The development of a system that integrates reverse osmosis (RO) with a horticultural greenhouse has been advanced through laboratory experiments. In this concept, intended for the inland desalination of brackish groundwater in dry areas, the RO concentrate will be reduced in volume by passing it through the evaporative cooling pads of the greenhouse. The system will be powered by solar photovoltaics (PV). Using a solar array simulator, we have verified that the RO can operate with varying power input and recovery rates to meet the water demands for irrigation and cooling of a greenhouse in north-west India. Cooling requires ventilation by a fan which has also been built, tested and optimised with a PV module outdoors. Results from the experiments with these two subsystems (RO and fan) are compared to theoretical predictions to reach conclusions about energy usage, sizing and cost. For example, the optimal sizing for the RO system is 0.12–1.3 m2 of PV module per m2 of membrane, depending on feed salinity. For the fan, the PV module area equals that of the fan aperture. The fan consumes <30 J of electrical energy per m3 of air moved which is 3 times less than that of standard fans. The specific energy consumption of the RO, at 1–2.3 kWh ?m-3, is comparable to that reported by others. Now that the subsystems have been verifi ed, the next step will be to integrate and test the whole system in the field.
Resumo:
In many areas of northern India, salinity renders groundwater unsuitable for drinking and even for irrigation. Though membrane treatment can be used to remove the salt, there are some drawbacks to this approach e.g. (1) depletion of the groundwater due to over-abstraction, (2) saline contamination of surface water and soil caused by concentrate disposal and (3) high electricity usage. To address these issues, a system is proposed in which a photovoltaic-powered reverse osmosis (RO) system is used to irrigate a greenhouse (GH) in a stand-alone arrangement. The concentrate from the RO is supplied to an evaporative cooling system, thus reducing the volume of the concentrate so that finally it can be evaporated in a pond to solid for safe disposal. Based on typical meteorological data for Delhi, calculations based on mass and energy balance are presented to assess the sizing and cost of the system. It is shown that solar radiation, freshwater output and evapotranspiration demand are readily matched due to the approximately linear relation among these variables. The demand for concentrate varies independently, however, thus favouring the use of a variable recovery arrangement. Though enough water may be harvested from the GH roof to provide year-round irrigation, this would require considerable storage. Some practical options for storage tanks are discussed. An alternative use of rainwater is in misting to reduce peak temperatures in the summer. An example optimised design provides internal temperatures below 30EC (monthly average daily maxima) for 8 months of the year and costs about €36,000 for the whole system with GH floor area of 1000 m2 . Further work is needed to assess technical risks relating to scale-deposition in the membrane and evaporative pads, and to develop a business model that will allow such a project to succeed in the Indian rural context.
Resumo:
This study proposes a new type of greenhouse for water re-use and energy saving for agriculture in arid and semi-arid inland regions affected by groundwater salinity. It combines desalination using reverse osmosis (RO), re-use of saline concentrate rejected by RO for cooling, and rainwater harvesting. Experimental work was carried at GBPUAT, Pantnagar, India. Saline concentrate was fed to evaporative cooling pads of greenhouse and found to evaporate at similar rates as conventional freshwater. Two enhancements to the system are described: i) A jet pump, designed and tested to use pressurized reject stream to re-circulate cooling water and thus maintain uniform wetness in cooling pads, was found capable of multiplying flow of cooling water by a factor of 2.5 to 4 while lifting water to a head of 1.55 m; and ii) Use of solar power to drive ventilation fans of greenhouse, for which an electronic circuit has been produced that uses maximum power-point tracking to maximize energy efficiency. Re-use of RO rejected concentrate for cooling saves water (6 l d-1 m-2) of greenhouse floor area and the improved fan could reduce electricity consumption by a factor 8.
Resumo:
A 10 cm diameter four-stage Scheibel column with dispersed phase wetted packing sections has been constructed to study the hydrodynamics and mass transfer using the system toluene-acetone-water. The literature pertaining to the above extractor has been examined and the important phenomena such as droplet break-up and coalescence, mass transfer and backmixing have been reviewed. A critical analysis of the backmixing or axial mixing models and the corresponding techniques for parameter estimation was applied and an optimization technique based on Marquardt's algorithm was implemented. A single phase sampling technique was developed to estimate the acetone concentration profile in both phases along the column. Column flooding characteristics were investigated under various operating conditions and it was found that, when the impellers were located at about DI/5cm from the upper surface of the pads, the limiting flow rates increased with impeller speed. This unusual behaviour was explained in terms of the pumping effect created by the turbine impellers. Correlations were developed to predict Sauter mean drop diameters. A five-cell with backflow model was used to estimate the column performance (stage efficiency) and phases non-ideality (backflow parameters). Overall mass transfer coefficients were computed using the above model and compared with those calculated using the correlations based on single drop mechanism.
Resumo:
Evaporative pads are frequently used for the cooling of greenhouses. However, a drawback of this method is the consumption of freshwater. In this paper it is shown, both theoretically and through a practical example, that effective evaporative cooling can be achieved using seawater in place of fresh water. The advantages and drawbacks of using seawater are discussed more generally. In climates that are both hot and humid, evaporative systems cannot always provide sufficient cooling, with the result that cultivation often has to be halted during the hottest months of the year. To overcome this, we propose a concept in which a desiccant pad is used to dehumidify the air before it enters the evaporative pad. The desiccant pad is supplied with a hygroscopic liquid that is regenerated by the energy of the sun. The performance of this concept has been modelled and the properties of various liquids have been compared. An attractive option is to obtain the liquid from seawater itself, given that seawater contains hygroscopic salts such as magnesium chloride. Preliminary experiments are reported in which magnesium chloride solution has been regenerated beneath a solar simulator.