21 resultados para PUMPED HOLLOW-FIBER

em Aston University Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We demonstrate optically tunable dispersion compensators based on pumping fiber Bragg gratings made in Er/Yb codoped fiber. The tunable dispersion for a chirped grating and also a uniform-period grating was successfully demonstrated in the experiment. The dispersion of the chirped grating was tuned from 900 to 1990 ps/nm and also from -600 to -950 ps/nm in the experiment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The first demonstration of a hollow core photonic bandgap fiber suitable for high-rate data transmission at 2µm is presented. Using a custom built Thulium doped fiber amplifier, error-free 8Gbit/s transmission in an optically amplified data channel at 2008nm is reported for the first time.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A high-power diode-cladding-pumped Ho-doped fluoride glass fiber laser operating in cascade mode is demonstrated. The 5|6 -> 5|7 and 5|7 -> 5|8 laser transitions produced 0:77W at a measured slope efficiency of 12.4% and 0:24Wat a measured slope efficiency of 5.2%, respectively. Using a long fiber length, which forced a large threshold for the 5|7 -> 5|8 transition, a wavelength of 3:002 µm was measured at maximum output power, making this system the first watt-level fiber laser operating in the mid-IR.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A high-power diode-cladding-pumped Ho-doped fluoride glass fiber laser operating in cascade mode is demonstrated. The 5|6 -> 5|7 and 5|7 -> 5|8 laser transitions produced 0:77W at a measured slope efficiency of 12.4% and 0:24Wat a measured slope efficiency of 5.2%, respectively. Using a long fiber length, which forced a large threshold for the 5|7 -> 5|8 transition, a wavelength of 3:002 µm was measured at maximum output power, making this system the first watt-level fiber laser operating in the mid-IR.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We demonstrate optically tunable dispersion compensators based on pumping fiber Bragg gratings made in Er/Yb codoped fiber. The tunable dispersion for a chirped grating and also a uniform-period grating was successfully demonstrated in the experiment. The dispersion of the chirped grating was tuned from 900 to 1990 ps/nm and also from -600 to -950 ps/nm in the experiment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The first demonstration of a hollow core photonic bandgap fiber (HC-PBGF) suitable for high-rate data transmission in the 2 μm waveband is presented. The fiber has a record low loss for this wavelength region (4.5 dB/km at 1980 nm) and a >150 nm wide surface-mode-free transmission window at the center of the bandgap. Detailed analysis of the optical modes and their propagation along the fiber, carried out using a time-of-flight technique in conjunction with spatially and spectrally resolved (S) imaging, provides clear evidence that the HC-PBGF can be operated as quasi-single mode even though it supports up to four mode groups. Through the use of a custom built Thulium doped fiber amplifier with gain bandwidth closely matched to the fiber's low loss window, error-free 8 Gbit/s transmission in an optically amplified data channel at 2008 nm over 290 m of 19 cell HC-PBGF is reported. © 2013 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

World's first demonstration of WDM transmission in a HC-PBGF at the predicted low loss region of 2m is presented. A total capacity of 16 Gbit/s is achieved using 1×8.5 Gbit/s and 3×2.5 Gbit/s channels modulated using NRZ OOK over 290 meters of hollow core fiber. © 2013 OSA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Operation of a single-clad Dy 3+-doped ZrF 4-BaF 2-LaF 3-AlF 3-NaF (ZBLAN) fiber laser operating at mid-infrared near 3 μm is presented. The laser is pumped by an Yb 3+-doped silica fiber laser centered at 1088 nm. An output of near 0.1 W with a slope efficiency of up to 23% with respect to absorbed pump power was measured. The laser performance, theoretical modeling and laser spectrum of Dy fiber laser system with respect to various cavity losses are studied. The experimental slope efficiency is more than 4.5 times higher than the previous demonstration, and is 64% of the Stokes efficiency limit. The efficiency was improved by using cavity mirrors of reflectivities of 99 and 50%. The emission central wavelength and spectral width are found to be dependent on the pump power and output coupler, reflectivity. © 2011 by Astro Ltd., published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We combine all the known experimental demonstrations and spectroscopic parameters into a numerical model of the Ho3+ -doped fluoride glass fiber laser system. Core-pumped and cladding-pumped arrangements were simulated for all the population-bottlenecking mitigation schemes that have been tested, and good agreement between the model and the previously reported experimental results was achieved in most but not in all cases. In a similar way to Er3+ -doped fluoride glass fiber lasers, we found that the best match with measurements required scaled-down rate parameters for the energy transfer processes that operate in moderate to highly concentrated systems. The model isolated the dominant processes affecting the performance of each of the bottlenecking mitigation schemes and pump arrangements. It was established that pump excited-state absorption is the main factor affecting the performance of the core-pumped demonstrations of the laser, while energy transfer between rare earth ions is the main factor controlling the performance in cladding-pumped systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A diode-cladding-pumped mid-infrared passively Q-switched Ho3+-doped fluoride fiber laser using a reverse designed broad band semiconductor saturable mirror (SESAM) was demonstrated. Nonlinear reflectivity of the SESAM was measured using an in-house Yb3+-doped mode-locked fiber laser at 1062 nm. Stable pulse train was produced at a slope efficient of 12.1% with respect to the launched pump power. Maximum pulse energy of 6.65 μ J with a pulse width of 1.68 μ s and signal-to-noise ratio (SNR) of ∼50 dB was achieved at a repetition rate of 47.6 kHz and center wavelength of 2.971 μ m. To the best of our knowledge, this is the first 3 μ m region SESAM-based Q-switched fiber laser with the highest average power and pulse energy, as well as the longest wavelength from mid-infrared passively Q-switched fluoride fiber lasers. © 2014 Astro Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate an all-fiber passively Q-switched erbiumdoped fiber laser (EDFL) using a gold-nanosphere (GNS) based saturable absorber (SA) with evanescent field interaction. Using the interaction of evanescent field for fabricating SAs, long nonlinear interaction length of evanescent wave and GNSs can be achieved. The GNSs are synthesized from mixing solution of chloroauricacid (HAuCl4) and sodium citrate by the heating effects of the microfiber's evanescent field radiation. The proposed passively Q-switched EDFL could give output pulses at 1562 nm with pulse width of 1.78 μs, a repetition rate of 58.1 kHz, a pulse energy of 133 nJ and a output power of 7.7 mWwhen pumped by a 980 nm laser diode of 237 mW. © 2014 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An optical in-fiber modal interferometer-based volume strain sensor for earthquake prediction is proposed and experimentally demonstrated. The sensing element is formed by wrapping a multimode-singlemode-multimode fiber structure onto a polyurethane hollow column. Due to the modal interference between the excited guided modes in the fiber, strong interference pattern could be observed in the transmission spectrum. Theoretical analysis verifies that the resonant wavelength shifts as a result of the volume strain variation caused by the column deformation with square root relationship. Sensitivity > 3.93 pm/με within the volume strain ranging from 0 to 1300 με is also experimentally demonstrated. By taking the response of bidirectional change of volume strain and the sluggish character of the employed sensing material into consideration, the sensing system presents good repeatability and stability. © 2001-2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A diode-cladding-pumped mid-infrared passively Q-switched Ho 3+-doped fluoride fiber laser using a reverse designed broad band semiconductor saturable mirror (SESAM) was demonstrated. Nonlinear reflectivity of the SESAM was measured using an in-house Yb3+-doped mode-locked fiber laser at 1062 nm. Stable pulse train was produced at a slope efficient of 12.1% with respect to the launched pump power. Maximum pulse energy of 6.65 μJ with a pulse width of 1.68 μs and signal to noise ratio (SNR) of ~50 dB was achieved at a repetition rate of 47.6 kHz and center wavelength of 2.971 μm. To the best of our knowledge, this is the first 3 μm region SESAM based Q-switched fiber laser with the highest average power and pulse energy, as well as the longest wavelength from mid-infrared passively Q-switched fluoride fiber lasers. © 2014 SPIE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unrepeatered 100 Gbit/s per channel wave-divisionmultiplexed dual-polarization-QPSK transmission with random distributed feedback fiber laser-based Raman amplification using fiber Bragg grating is demonstrated. Transmission of 1.4 Tb/s (14 × 100 Gbit/s) was possible in 352.8 km link and 2.2 Tb/s (22 × 100 Gbit/s) was achieved in 327.6 km without employing remote optically pumped amplifier or speciality fibers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A thulium-doped all-fiber laser passively mode-locked by the co-action of nonlinear polarization evolution and single-walled carbon nanotubes operating at 1860-1980 nm wavelength band is demonstrated. Pumped with the single-mode laser diode at 1.55 μm laser generates near 500-fs soliton pulses at repetition rate ranging from 6.3 to 72.5 MHz in single-pulse operation regime. Having 3-m long cavity average output power reached 300 mW, giving the peak power of 4.88 kW and the pulse energy of 2.93 nJ with slope efficiency higher than 30%. At a 21.6-m long ring cavity average output power of 117 mW is obtained, corresponding to the pulse energy up to 10.87 nJ and a pulse peak power of 21.7 kW, leading to the higher-order soliton generation.