11 resultados para PS I and PS II

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antigenic peptide is presented to a T-cell receptor (TCR) through the formation of a stable complex with a major histocompatibility complex (MHC) molecule. Various predictive algorithms have been developed to estimate a peptide's capacity to form a stable complex with a given MHC class II allele, a technique integral to the strategy of vaccine design. These have previously incorporated such computational techniques as quantitative matrices and neural networks. A novel predictive technique is described, which uses molecular modeling of predetermined crystal structures to estimate the stability of an MHC class II-peptide complex. The structures are remodeled, energy minimized, and annealed before the energetic interaction is calculated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative structure-activity relationship (QSAR) analysis is a cornerstone of modern informatics. Predictive computational models of peptide-major histocompatibility complex (MHC)-binding affinity based on QSAR technology have now become important components of modern computational immunovaccinology. Historically, such approaches have been built around semiqualitative, classification methods, but these are now giving way to quantitative regression methods. We review three methods--a 2D-QSAR additive-partial least squares (PLS) and a 3D-QSAR comparative molecular similarity index analysis (CoMSIA) method--which can identify the sequence dependence of peptide-binding specificity for various class I MHC alleles from the reported binding affinities (IC50) of peptide sets. The third method is an iterative self-consistent (ISC) PLS-based additive method, which is a recently developed extension to the additive method for the affinity prediction of class II peptides. The QSAR methods presented here have established themselves as immunoinformatic techniques complementary to existing methodology, useful in the quantitative prediction of binding affinity: current methods for the in silico identification of T-cell epitopes (which form the basis of many vaccines, diagnostics, and reagents) rely on the accurate computational prediction of peptide-MHC affinity. We have reviewed various human and mouse class I and class II allele models. Studied alleles comprise HLA-A*0101, HLA-A*0201, HLA-A*0202, HLA-A*0203, HLA-A*0206, HLA-A*0301, HLA-A*1101, HLA-A*3101, HLA-A*6801, HLA-A*6802, HLA-B*3501, H2-K(k), H2-K(b), H2-D(b) HLA-DRB1*0101, HLA-DRB1*0401, HLA-DRB1*0701, I-A(b), I-A(d), I-A(k), I-A(S), I-E(d), and I-E(k). In this chapter we show a step-by-step guide into predicting the reliability and the resulting models to represent an advance on existing methods. The peptides used in this study are available from the AntiJen database (http://www.jenner.ac.uk/AntiJen). The PLS method is available commercially in the SYBYL molecular modeling software package. The resulting models, which can be used for accurate T-cell epitope prediction, will be made are freely available online at the URL http://www.jenner.ac.uk/MHCPred.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of the Type I and Type II scheme, first introduced and used by fiber Bragg grating researchers, has recently been adopted by the ultrafast laser direct-write photonics community to classify the physical geometry of waveguides written into glasses and crystals. This has created confusion between the fiber Bragg grating and direct-write photonics community. Here we propose a return to the original basis of the classification based on the characteristics of the material modification rather than the physical geometry of the waveguide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The antioxidants butylated hydroxytoluene (BHT, 1 mM) and d-α-tocopherol (10 μM) completely attenuated protein degradation in murine myotubes in response to both proteolysis-inducing factor (PIF) and angiotensin II (Ang II), suggesting that the formation of reactive oxygen species (ROS) plays an important role in this process. Both PIF and Ang II induced a rapid and transient increase in ROS formation in myotubes, which followed a parabolic dose-response curve, similar to that for total protein degradation. Antioxidant treatment attenuated the increase in expression and activity of the ubiquitin-proteasome proteolytic pathway by PIF and Ang II, by preventing the activation of the transcription factor nuclear factor-κB (NF-κB), through inhibition of phosphorylation of the NF-κB inhibitor protein (I-κB) and its subsequent degradation. ROS formation by both PIF and Ang II was attenuated by diphenyleneiodonium (10 μM), suggesting that it was mediated through the NADPH oxidase system. ROS formation was also attenuated by trifluoroacetyl arachidonic acid (10 μM), a specific inhibitor of cytosolic phospholipase A2, U-73122 (5 μM) and D609 (200 μM), inhibitors of phospholipase C and calphostin C (300 nM), a highly specific inhibitor of protein kinase C (PKC), all known activators of NADPH oxidase. Myotubes containing a dominant-negative mutant of PKC did not show an increase in ROS formation in response to either PIF or Ang II. The two Rac1 inhibitors W56 (200 μM) and NSC23766 (10 μM) also attenuated both ROS formation and protein degradation induced by both PIF and Ang II. Rac1 is known to mediate signalling between the phosphatidylinositol-3 kinase (PI-3K) product and NADPH oxidase, and treatment with LY24002 (10 μM), a highly selective inhibitor of PI-3K, completely attenuated ROS production in response to both PIF and Ang II, and inhibited total protein degradation, while the inactive analogue LY303511 (100 μM) had no effect. ROS formation appears to be important in muscle atrophy in cancer cachexia, since treatment of weight losing mice bearing the MAC16 tumour with d-α-tocopherol (1 mg kg- 1) attenuated protein degradation and increased protein synthesis in skeletal muscle. © 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Yorick Wilks is a central figure in the fields of Natural Language Processing and Artificial Intelligence. His influence has extends to many areas of these fields and includes contributions to Machine Translation, word sense disambiguation, dialogue modeling and Information Extraction.This book celebrates the work of Yorick Wilks from the perspective of his peers. It consists of original chapters each of which analyses an aspect of his work and links it to current thinking in that area. His work has spanned over four decades but is shown to be pertinent to recent developments in language processing such as the Semantic Web.This volume forms a two-part set together with Words and Intelligence I, Selected Works by Yorick Wilks, by the same editors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of angiotensin I (Ang I) and II (Ang II) to induce directly protein degradation in skeletal muscle has been studied in murine myotubes. Angiotensin I stimulated protein degradation with a parabolic dose-response curve and with a maximal effect between 0.05 and 0.1 μM. The effect was attenuated by coincubation with the angiotensin-converting enzyme (ACE) inhibitor imidaprilat, suggesting that angiotensin I stimulated protein degradation through conversion to Ang II. Angiotensin II also stimulated protein breakdown with a similar dose-response curve, and with a maximal effect between 1 and 2.5 μM. Total protein degradation, induced by both Ang I and Ang II, was attenuated by the proteasome inhibitors lactacystin (5 μM) and MG132 (10 μM), suggesting that the effect was mediated through upregulation of the ubiquitin-proteasome proteolytic pathway. Both Ang I and Ang II stimulated an increased proteasome 'chymotrypsin-like' enzyme activity as well as an increase in protein expression of 20S proteasome α-subunits, the 19S subunits MSSI and p42, at the same concentrations as those inducing protein degradation. The effect of Ang I was attenuated by imidaprilat, confirming that it arose from conversion to Ang II. These results suggest that Ang II stimulates protein degradation in myotubes through induction of the ubiquitin-proteasome pathway. Protein degradation induced by Ang II was inhibited by insulin-like growth factor and by the polyunsaturated fatty acid, eicosapentaenoic acid. These results suggest that Ang II has the potential to cause muscle atrophy through an increase in protein degradation. The highly lipophilic ACE inhibitor imidapril (Vitor™) (30 mg kg-1) attenuated the development of weight loss in mice bearing the MAC16 tumour, suggesting that Ang II may play a role in the development of cachexia in this model. © 2005 Cancer Research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

beta-Hydroxy-beta-methylbutyrate (HMB; 50 microM) has been shown to attenuate the depression in protein synthesis in murine myotubes in response to lipopolysaccharide (LPS), tumor necrosis factor-alpha (TNF-alpha) with or without interferon-gamma (IFN-gamma), and angiotensin II (ANG II). The mechanism for the depression of protein synthesis by all three agents was the same and was attributed to activation of double-stranded RNA-dependent protein kinase (PKR) with the subsequent phosphorylation of eukaryotic initiation factor 2 (eIF2) on the alpha-subunit as well as increased phosphorylation of the elongation factor (eEF2). Myotubes expressing a catalytically inactive PKR variant, PKRDelta6, showed no depression of protein synthesis in response to either LPS or TNF-alpha, confirming the importance of PKR in this process. There was no effect of any of the agents on phosphorylation of mammalian target of rapamycin (mTOR) or initiation factor 4E-binding protein (4E-BP1), and thus no change in the amount of eIF4E bound to 4E-BP1 or the concentration of the active eIF4E.eIF4G complex. HMB attenuated phosphorylation of eEF2, possibly by increasing phosphorylation of mTOR, and also attenuated phosphorylation of eIF2alpha by preventing activation of PKR. These results suggest that HMB may be effective in attenuating muscle atrophy in a range of catabolic conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both tumor necrosis factor-alpha (TNF-alpha)/interferon-gamma (IFN-gamma) and angiotensin II (ANG II) induced an increase in total protein degradation in murine myotubes, which was completely attenuated by treatment with beta-hydroxy-beta-methylbutyrate (HMB; 50 microM). There was an increase in formation of reactive oxygen species (ROS) within 30 min, as well as an increase in the activity of both caspase-3 and -8, and both effects were attenuated by HMB. Moreover, inhibitors of caspase-3 and -8 completely attenuated both ROS formation and total protein degradation induced by TNF-alpha/IFN-gamma and ANG II. There was an increased autophosphorylation of double-stranded RNA-dependent protein kinase (PKR), which was attenuated by the specific caspase-3 and -8 inhibitors. Neither ROS formation or protein degradation occurred in myotubes expressing a catalytically inactive PKR variant, PKRDelta6, in response to TNF-alpha/IFN-gamma, compared with myotubes expressing wild-type PKR, although there was still activation of caspase-3 and -8. HMB also attenuated activation of PKR, suggesting that it was important in protein degradation. Formation of ROS was attenuated by rotenone, an inhibitor of the mitochondrial electron transport chain, nitro-l-arginine methyl ester, an inhibitor of nitric oxide synthase, and SB 203580, a specific inhibitor of p38 mitogen-activated protein kinase (p38 MAPK), which also attenuated total protein degradation. Activation of p38 MAPK by PKR provides the link to ROS formation. These results suggest that TNF-alpha/IFN-gamma and ANG II induce muscle protein degradation by a common signaling pathway, which is attenuated by HMB, and that this involves the initial activation of caspase-3 and -8, followed by autophosphorylation and activation of PKR, which then leads to increased ROS formation via activation of p38 MAPK. Increased ROS formation is known to induce protein degradation through the ubiquitin-proteasome pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR CONSULTATION

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report experimental findings for tailoring the temperature and strain coefficients of Type I and Type IA fibre Bragg gratings by influencing the photosensitivity presensitization of the host optical fibre. It is shown that by controlling the level of hydrogen saturation, via hot and cold hydrogenation, it is possible to produce gratings with lower thermal coefficients. Furthermore, there is a larger difference between the Type I and Type IA thermal coefficients and a significant improvement in the matrix condition number, which impacts the ability to recover accurate temperature and strain data using the Type 1-1A dual grating sensor. © 2006 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concerns that variola viruses might be used as bioweapons have renewed the interest in developing new and safer smallpox vaccines. Variola virus genomes are now widely available, allowing computational characterization of the entire T-cell epitome and the use of such information to develop safe and yet effective vaccines. To this end, we identified 124 proteins shared between various species of pathogenic orthopoxviruses including variola minor and major, monkeypox, cowpox, and vaccinia viruses, and we targeted them for T-cell epitope prediction. We recognized 8,106, and 8,483 unique class I and class II MHC-restricted T-cell epitopes that are shared by all mentioned orthopoxviruses. Subsequently, we developed an immunological resource, EPIPOX, upon the predicted T-cell epitome. EPIPOX is freely available online and it has been designed to facilitate reverse vaccinology. Thus, EPIPOX includes key epitope-focused protein annotations: time point expression, presence of leader and transmembrane signals, and known location on outer membrane structures of the infective viruses. These features can be used to select specific T-cell epitopes suitable for experimental validation restricted by single MHC alleles, as combinations thereof, or by MHC supertypes.