7 resultados para POLYNUCLEAR SILVER(I) COMPLEXES
em Aston University Research Archive
Resumo:
A series of manganese(II) [Mn(L)] and manganese(III) [Mn(L)(X)] (X = ClO4, OAc, NCS, N3, Cl, Br and I) complexes have been synthesized from Schiff base ligands N,N′-o- phenylenebis(salicylideneimine)(LH2) and N,N′-o-phenylenebis(5- bromosalicylideneimine)(L′H2) obtained by condensation of salicylaldehyde or 5-Br salicylaldehyde with o-phenylene-diamine. The complexes have been characterized by the combination of IR, UV-Vis spectroscopy, magnetic measurements and electrochemical studies. Three manganese(III) complexes 3 [Mn(L)(ClO4)(H2O)], 5 [Mn(L)(OAc)] and 13 [Mn(L)(NCS)] have been characterized by X-ray crystallography. The X-ray structures show that the manganese(III) is hexa-coordinated in 3, it is penta-coordinated in 13, while in 5 there is an infinite chain where the MnL moieties are connected by acetate ions acting as bridging bidentate ligand. The cyclic voltammograms of all the manganese(III) complexes exhibit two reversible/quasi-reversible/ irreversible responses assignable to Mn(III)/Mn(II) and Mn(IV)/Mn(III) couples. It was observed that the ligand L′H2 containing the 5-bromosal moiety always stabilizes the lower oxidation states compared to the corresponding unsubstituted LH2. Cyclic voltammograms of the manganese(II) complexes (1 and 2) exhibit a quasi-reversible Mn(III)/Mn(II) couple at E1/2 -0.08 V for 1 and 0.054 V for 2. © 2005 Elsevier B.V. All rights reserved.
Resumo:
T cell receptor (TCR) recognition of peptide-MHC class I (pMHC) complexes is a crucial event in the adaptive immune response to pathogens. Peptide epitopes often display a strong dominance hierarchy, resulting in focusing of the response on a limited number of the most dominant epitopes. Such T cell responses may be additionally restricted by particular MHC alleles in preference to others. We have studied this poorly understood phenomenon using Theileria parva, a protozoan parasite that causes an often fatal lymphoproliferative disease in cattle. Despite its antigenic complexity, CD8+ T cell responses induced by infection with the parasite show profound immunodominance, as exemplified by the Tp1(214-224) epitope presented by the common and functionally important MHC class I allele N*01301. We present a high-resolution crystal structure of this pMHC complex, demonstrating that the peptide is presented in a distinctive raised conformation. Functional studies using CD8+ T cell clones show that this impacts significantly on TCR recognition. The unconventional structure is generated by a hydrophobic ridge within the MHC peptide binding groove, found in a set of cattle MHC alleles. Extremely rare in all other species, this feature is seen in a small group of mouse MHC class I molecules. The data generated in this analysis contribute to our understanding of the structural basis for T cell-dependent immune responses, providing insight into what determines a highly immunogenic p-MHC complex, and hence can be of value in prediction of antigenic epitopes and vaccine design.
Resumo:
The twin goals of low and efficient fuel use and minimum emissions are increasingly being addressed by research in both the motor and the catalyst industries of the world. This study was designed to attempt to investigate these goals. For diesel engine vehicles, this can be achieved by improving the efficiency of the fuel combustion in the combustion chamber. By having a suitable oxidation catalyst in the fuel one would expect the efficiency of the fuel combustion to be increased and fewer partial oxidation products to be formed. Also by placing a catalyst converter in the exhaust system partial oxidation products may be converted to more desirable final products. Finally, in this research the net catalytic effect of using an additive treated fuel and a blank ceramic monolith to trap the metal in the exhaust gases for potential use as catalytic converter was investigated. Suitable metal additives must yield a stable solution in the fuel tank. That is, they should not react with the air, water and rust that are always present. The research was targeted on the synthesis of hydrocarbon-soluble complexes that might exhibit unusually slow rates of ligand substitution. For materials containing metal ions, these properties are best met by using multi-dentate ligands that form neutral complexes. Metal complexes have been synthesised using acetylacetone derivatives, schiff base ligands and macrocyclic polyamine ligands, as potential pro-oxidant additives. Their thermal stabilities were also investigated using a differential thermal analysis instrument. The complexes were then investigated as potential additives for use in diesel fuel. The tests were conducted under controlled conditions using a diesel combustion bomb simulating the combustion process in the D.I. diesel engine, a test bed engine, and a vehicle engine.
Resumo:
Two modified Jacobsen-type catalysts were anchored onto an amine functionalised hexagonal mesoporous silica (HMS) using two distinct anchoring procedures: (i) one was anchored directly through the carboxylic acid functionalised diimine bridge fragment of the complex (CAT1) and (ii) the other through the hydroxyl group on the aldehyde fragment of the complex (CAT2), mediated by cyanuric chloride. The new heterogeneous catalyst, as well as the precedent materials, were characterised by elemental analyses, DRIFT, UV-vis, porosimetry and XPS which showed that the complexes were successfully anchored onto the hexagonal mesoporous silica. These materials acted as active heterogeneous catalysts in the epoxidation of styrene, using m-CPBA as oxidant, and α-methylstyrene, using NaOCl as oxidant. Under the latter conditions they acted also as enantioselective heterogeneous catalysts. Furthermore, when compared to the reaction run in homogeneous phase under similar experimental conditions, an increase in asymmetric induction was observed for the heterogenised CAT1, while the opposite effect was observed for the heterogenised CAT2, despite of CAT2 being more enantioselective than CAT1 in homogeneous phase. These results indicate that the covalent attachment of the Jacobsen catalyst through the diimine bridge leads to improved enantiomeric excess (%ee), whereas covalent attachment through one of the aldehyde fragments results in a negative effect in the %ee. Using α-methylstyrene and NaOCl as oxidant, heterogeneous catalyst reuse led to no significant loss of catalytic activity and enantioselectivity. © 2005 Elsevier Inc. All rights reserved.
Resumo:
The study reports an advance in designing copper-based redox sensing MRI contrast agents. Although the data demonstrate that copper(II) complexes are not able to compete with lanthanoids species in terms of contrast, the redox-dependent switch between diamagnetic copper(I) and paramagnetic copper(II) yields a novel redox-sensitive contrast moiety with potential for reversibility.
Resumo:
This article describes the synthesis, structures and systematic study of the spectroscopic and redox properties of a series of octahedral molybdenum metal cluster complexes with aromatic sulfonate ligands (nBu4N)2[{Mo6X8}(OTs)6] and (nBu4N)2[{Mo6X8}(PhSO3)6] (where X- is Cl-, Br- or I-; OTs- is p-toluenesulfonate and PhSO3 - is benzenesulfonate). All the complexes demonstrated photoluminescence in the red region and an ability to generate singlet oxygen. Notably, the highest quantum yields (>0.6) and narrowest emission bands were found for complexes with a {Mo6I8}4+ cluster core. Moreover, cyclic voltammetric studies revealed that (nBu4N)2[{Mo6X8}(OTs)6] and (nBu4N)2[{Mo6X8}(PhSO3)6] confer enhanced stability towards electrochemical oxidation relative to corresponding starting complexes (nBu4N)2[{Mo6X8}X6].