10 resultados para POLYMORPHISM

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A previous study has suggested that a G to A base change at position 169 of the GHRH-receptor gene in human somatotrophinomas is a mutation and confers hypersensitivity to GHRH. The alternative base converts codon 57 from GCG to AGC, resulting in replacement of alanine (Ala) with threonine (Thr). In the present study, two of five human GH-secreting somatotrophinomas were found to possess the codon 57 AGC sequence. The GCG allele was also detected, indicating heterozygosity. However, the patients' normal blood-derived DNA also yielded the same sequence pattern, indicating that the Ala=> Thr amino acid change is a normal polymorphism, and not a somatic mutation. Nevertheless, in vitro, the tumors possessing the Ala=> Thr amino acid change responded very strongly to GHRH in terms of cAMP formation, being increased 40- and 200-fold, in comparison to the 2-fold increases by tumors without the alternative GHRH-receptor sequence. Likewise, the in vitro response of GH secretion to GHRH was elevated. One of the two tumors with the alternative Thr residue, and the highest responder to GHRH, possessed a gsp muration, despite the fact that these defects are thought to reduce responsiveness to GHRH. These results fail to confirm that the GCG => AGC at codon 57 of the GHRH-receptor gene is a mutation, but do support the concept that the alternative form with Thr confers increased sensitivity to GHRH. (C) 2000 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two forms of the growth hormone-releasing hormone (GHRH) receptor (GHRH-R) exist in terms of a polymorphism at codon 57. The most common allele possesses GCG, coding for Ala. This codon can also be ACG, replacing the Ala with Thr. The present study demonstrates that the latter occurs in about 20% of pituitary somatotrophinomas, removed from patients with acromegaly. Somatotrophinomas possessing the alternative allele respond, on average, more strongly to GHRH in terms of GH secretion in vitro than tumors which are homozygous for the more common allele. The distribution of the two allelic forms of the GHRH-R did not significantly differ between acromegalic and non-acromegalic subjects. Thus, while the alternative allelic forms may, at least partially, contribute to the variable response of serum GH levels to i.v. GHRH observed in acromegalic and normal subjects, it is unlikely that subjects possessing the rarer form containing Thr in place of Ala at residue 57 are at increased risk of developing acromegaly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The term "pharmacogenetics" has been defined as the scientific study of inherited factors that affect the human drug response. Many pharmacogenetie studies have been published since 1995 and have focussed on the principal enzyme family involved in drug metabolism, the cytochrome P450 family, particularly cytochrome P4502C9 and 2C19. In order to investigate the pharmacogenetic aspect of pharmacotherapy, the relevant studies describing the association of pharmacogenetic factor(s) in drug responses must be retrieved from existing literature using a systematic review approach. In addition, the estimation of variant allele prevalence for the gene under study between different ethnic populations is important for pharmacogenetic studies. In this thesis, the prevalence of CYP2C9/2C19 alleles between different ethnicities has been estimated through meta-analysis and the population genetic principle. The clinical outcome of CYP2C9/2C19 allelic variation on the pharmacotherapy of epilepsy has been investigated; although many new antiepileptic drugs have been launched into the market, carbamazepine, phenobarbital and phenytoin are still the major agents in the pharmacotherapy of epilepsy. Therefore, phenytoin was chosen as a model AED and the effect of CYP2C9/2C19 genetic polymorphism on phenytoin metabolism was further examined.An estimation of the allele prevalence was undertaken for three CYP2C9/2C19 alleles respectively using a meta-analysis of studies that fit the Hardy-Weinberg equilibrium. The prevalence of CYP2C9*1 is approximately 81%, 96%, 97% and 94% in Caucasian, Chinese, Japanese, African populations respectively; the pooled prevalence of CYP2C19*1 is about 86%, 57%, 58% and 85% in these ethnic populations respectively. However, the studies of association between CYP2C9/2C19 polymorphism and phenytoin metabolism failed to achieve any qualitative or quantitative conclusion. Therefore, mephenytoin metabolism was examined as a probe drug for association between CYP2C19 polymorphism and mephenytoin metabolic ratio. Similarly, analysis of association between CYP2C9 polymorphism and warfarin dose requirement was undertaken.It was confirmed that subjects carrying two mutated CYP2C19 alleles have higher S/R mephenytoin ratio due to deficient CYP2C19 enzyme activity. The studies of warfarin and CYP2C9 polymorphism did not provide a conclusive result due to poor comparability between studies.The genetic polymorphism of drug metabolism enzymes has been studied extensively, however other genetic factors, such as multiple drug resistance genes (MDR) and genes encoding ion channels, which may contribute to variability in function of drug transporters and targets, require more attention in future pharmacogenetic studies of antiepileptic drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background - The PCK1 gene, encoding cytosolic phosphoenolpyruvate carboxykinase (PEPCKC), has previously been implicated as a candidate gene for type 2 diabetes (T2D) susceptibility. Rodent models demonstrate that over-expression of Pck1 can result in T2D development and a single nucleotide polymorphism (SNP) in the promoter region of human PCK1 (-232C/G) has exhibited significant association with the disease in several cohorts. Within the UK-resident South Asian population, T2D is 4 to 6 times more common than in indigenous white Caucasians. Despite this, few studies have reported on the genetic susceptibility to T2D in this ethnic group and none of these has investigated the possible effect of PCK1 variants. We therefore aimed to investigate the association between common variants of the PCK1 gene and T2D in a UK-resident South Asian population of Punjabi ancestry, originating predominantly from the Mirpur area of Azad Kashmir, Pakistan. Methods - We used TaqMan assays to genotype five tagSNPs covering the PCK1 gene, including the -232C/G variant, in 903 subjects with T2D and 471 normoglycaemic controls. Results - Of the variants studied, only the minor allele (G) of the -232C/G SNP demonstrated a significant association with T2D, displaying an OR of 1.21 (95% CI: 1.03 - 1.42, p = 0.019). Conclusion - This study is the first to investigate the association between variants of the PCK1 gene and T2D in South Asians. Our results suggest that the -232C/G promoter polymorphism confers susceptibility to T2D in this ethnic group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cortical pain processing is associated with large-scale changes in neuronal connectivity, resulting from neural plasticity phenomena of which brain-derived neurotrophic factor (BDNF) is a central driver. The common single nucleotide polymorphism Val66Met is associated with reduced BDNF activity. Using the trigeminal pain-related evoked potential (tPREP) to repeated electrical painful stimuli, we investigated whether the methionine substitution at codon 66 of the BDNF gene was associated with changes in cortical processing of noxious stimuli. Fifty healthy volunteers were genotyped: 30 were Val/Val and 20 were Met-carriers. tPREPs to 30 stimuli of the right supraorbital nerve using a concentric electrode were recorded. The N2 and P2 component latencies and the N2-P2 amplitude were measured over the 30 stimuli and separately, by dividing the measurements in 3 consecutive blocks of 10 stimuli. The average response to the 30 stimuli did not differ in latency or amplitude between the 2 genotypes. There was a decrease in the N2-P2 amplitude between first and third block in the Val/Val group but not in Met-carriers. BDNF Val66Met is associated with reduced decremental response to repeated electrical stimuli, possibly as a result of ineffective mechanisms of synaptic memory and brain plasticity associated with the polymorphism. PERSPECTIVE: BDNF Val66Met polymorphism affects the tPREP N2-P2 amplitude decrement and influences cortical pain processing through neurotrophin-induced neural plasticity, or through a direct BDNF neurotransmitter-like effect. Our findings suggest that upcoming BDNF central agonists might in the future play a role in pain management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genome-wide association studies in bipolar disorder (BD)1 have implicated a single-nucleotide polymorphism (rs1006737, G right arrow A) in the CACNA1C gene, which encodes for the alpha 1c (CAV1.2) subunit of the voltage-gated, L-type calcium channel. Neuroimaging studies of healthy individuals report that this risk allele modulates brain function within limbic (amygdala, anterior cingulate gyrus) and hippocampal regions during tasks of reward processing2, 3 and episodic memory. Moreover, animal studies suggest that the CaV1.2 L-type calcium channels influence emotional behaviour through enhanced neurotransmission via the lateral amygdala pathway. On the basis of this evidence, we tested the hypotheses that the CACNA1C rs1006737 risk allele will modulate neural responses within predefined prefrontal and subcortical regions of interest during emotional face processing and that this effect would be amplified in BD patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The functional catechol-O-methyltransferase (COMT Val108/158Met) polymorphism has been shown to have an impact on tasks of executive function, memory and attention and recently, tasks with an affective component. As oestrogen reduces COMT activity, we focused on the interaction between gender and COMT genotype on brain activations during an affective processing task. We used functional MRI (fMRI) to record brain activations from 74 healthy subjects who engaged in a facial affect recognition task; subjects viewed and identified fearful compared to neutral faces. There was no main effect of the COMT polymorphism, gender or genotypegender interaction on task performance. We found a significant effect of gender on brain activations in the left amygdala and right temporal pole, where females demonstrated increased activations over males. Within these regions, Val/Val carriers showed greater signal magnitude compared to Met/Met carriers, particularly in females. The COMT Val108/158Met polymorphism impacts on gender-related patterns of activation in limbic and paralimbic regions but the functional significance of any oestrogen-related COMT inhibition appears modest. Copyright © 2008 CINP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monoamines have an important role in neural plasticity, a key factor in cortical pain processing that promotes changes in neuronal network connectivity. Monoamine oxidase type A (MAOA) is an enzyme that, due to its modulating role in monoaminergic activity, could play a role in cortical pain processing. The X-linked MAOA gene is characterized by an allelic variant of length, the MAOA upstream Variable Number Tandem Repeat (MAOA-uVNTR) region polymorphism. Two allelic variants of this gene are known, the high-activity MAOA (HAM) and low-activity MAOA (LAM). We investigated the role of MAOA-uVNTR in cortical pain processing in a group of healthy individuals measured by the trigeminal electric pain-related evoked potential (tPREP) elicited by repeated painful stimulation. A group of healthy volunteers was genotyped to detect MAOA-uVNTR polymorphism. Electrical tPREPs were recorded by stimulating the right supraorbital nerve with a concentric electrode. The N2 and P2 component amplitude and latency as well as the N2-P2 inter-peak amplitude were measured. The recording was divided into three blocks, each containing 10 consecutive stimuli and the N2-P2 amplitude was compared between blocks. Of the 67 volunteers, 37 were HAM and 30 were LAM. HAM subjects differed from LAM subjects in terms of amplitude of the grand-averaged and first-block N2-P2 responses (HAM>LAM). The N2-P2 amplitude decreased between the first and third block in HAM subjects but not LAM subjects. The MAOA-uVNTR polymorphism seemed to influence the brain response in a repeated tPREP paradigm and suggested a role of the MAOA as a modulator of neural plasticity related to cortical pain processing. Monoamines have an important role in neural plasticity, a key factor in cortical pain processing that promotes changes in neuronal network connectivity. Monoamine oxidase type A (MAOA) is an enzyme that, due to its modulating role in monoaminergic activity, could play a role in cortical pain processing. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.