7 resultados para POLYELECTROLYTE

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Progress in the development of actuating molecular devices based on responsive polymers is reviewed. The synthesis and characterization of "grafted from brushes and triblock copolymers is reported. The responsive nature of polyelectrolyte brushes, grown by surface initiated atomic transfer radical polymerization (ATRP), has been characterized by scanning force microscopy, neutron reflectometry, and single molecule force measurements. The molecular response is measured directly for the brushes in terms of both the brush height and composition and the force generated by a single molecule. Triblock copolymers, based on hydrophobic end blocks and polyacid midblock, have been used to produce polymer gels where the deformation of the molecules can be followed directly by small angle Xray scattering (SAXS), and a correlation between molecular shape change and macroscopic deformation has been established. A Landolt pHoscillator, based on bromate/sulfite/ferrocyanide, with a room temperature period of 20 min and a range of 3.1 polyelectrolyte molecules scale affinely to produce the macroscopic response of the system in an oscillating chemical reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a novel experimental study of a pH-responsive polyelectrolyte brush at the silicon/D2O interface. A poly[2-(diethylamino)ethyl methacrylate] brush was grown on a large silicon crystal which acted as both a substrate for a neutron reflectivity solid/liquid experiment but also as an FTIR-ATR spectroscopy crystal. This arrangement has allowed for both neutron reflectivities and FTIR spectroscopic information to be measured in parallel. The chosen polybase brush shows strong IR bands which can be assigned to the N-D+ stretch, D2O, and a carbonyl group. From such FTIR data, we are able to closely monitor the degree of protonation along the polymer chain as well as revealing information concerning the D2O concentration at the interface. The neutron reflectivity data allows us to determine the physical brush profile normal to the solid/liquid interface along with the corresponding degree of hydration. This combined approach makes it possible to quantify the charge on a polymer brush alongside the morphology adopted by the polymer chains. © 2013 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alginate is widely used as a viscosity enhancer in many different pharmaceutical formulations. The aim of this thesis is to quantitatively describe the functions of this polyelectrolyte in pharmaceutical systems. To do this the techniques used were Viscometry, Light Scattering, Continuous and Oscillatory Shear Rheometry, Numerical Analysis and Diffusion. Molecular characterization of the Alginate was carried out using Viscometry and Light Scattering to determine the molecular weight, the radius of gyration, the second virial coefficient and the Kuhn statistical segment length. The results showed good agreement with similar parameters obtained in previous studies. By blending Alginate with other polyelectrolytes, Xanthan Gum and 'Carbopol', in various proportions and with various methods of low and high shear preparation, a very wide range of dynamic rheological properties was found. Using oscillatory testing, the parameters often varied over several decades of magnitude. It was shown that the determination of the viscous and elastic components is particularly useful in describing the rheological 'profiles' of suspending agent blends and provides a step towards the non-empirical formulation of pharmaceutical disperse systems. Using numerical analysis of equations describing planar diffusion, it was shown that the analysis of drug release profiles alone does not provide unambiguous information about the mechanism of rate control. These principles were applied to the diffusion of Ibuprofen in Calcium Alginate gels. For diffusion in such non-Newtonian systems, emphasis was placed on the use of the elastic as well as the viscous component of viscoelasticity. It was found that the diffusion coefficients were relatively unaffected by increases in polymer concentration up to 5 per cent, yet the elasticities measured by oscillatory shear rheometry were increased. This was interpreted in the light of several theories of diffusion in gels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zwitterionic compounds, or zwitterions, are electrically neutral compounds having an equal number of formal unit charges of opposite sign. In common polyzwitterions the zwitterionic groups are usually located in pendent groups rather than the backbone of the macromolecule. Polyzwitterions contain both the anion and cation in the same monomeric unit, unlike polyampholytes which can contain the anion and cation in different monomeric units. The use of cationic and anionic monomers (or monomers capable of becoming charged) in stoichiometric equivalent proportions produces charge-balanced polyampholyte copolymers. Hydrogel materials produced from zwitterionic monomers have been proposed for use and are used in many biomaterial applications but synthetic charge-balanced polyampholyte are less common. Certain properties of hydrogels which are important for their successful use as biomaterials, these include the equilibrium water content, mechanical, surface energy, oxygen permeability, swelling and the coefficient of friction. The zwitterionic monomer N,N-dimethyl-N-(2-acryloylethyl)-N-(3-sulfopropyl) ammonium betaine (SPDA) was synthesized with 2-hydroxyethly acrylate (HEMA) as the comonomer to produce a series of polyzwitterion hydrogels. To produce charged-balanced copolymer hydrogels two “cationic” monomers were selected; 2-(diethylamino) ethyl methacrylate (DMAEMA) and 3-(dimethylamino) propyl methacrylamide (DMAPMA) and an anionic monomer; 2-acrylamido 2,2 methylpropane sulphonic acid (AMPS). Two series’ of charge-balanced copolymers were synthesized from stoichiometric equivalent ratios of DMAEMA or DMAPMA and AMPS with HEMA as a terpolymer. The zwitterionic copolymer and both charge-balanced copolymers produced clear, cohesive hydrogels. The zwitterionic and charge-balanced copolymers displayed similar EWC’s along with similar mechanical and surface energy properties. The swelling of the zwitterionic copolymer displayed antipolyelectrolyte behavior whereas the charge-balanced copolymers displayed behaviour somewhere between this and a typical polyelectrolyte. This work describes some aspects of the polymerisation and properties of SPDA copolymers and charge-balanced (polyampholyte) copolymers relevant to their potential as biomedical / bioresponsive materials. The biomimetic nature of SPDA together with its compatibility with other monomers makes it a useful and complimentary addition to the building blocks of biomaterials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Progress in making pH-responsive polyelectrolyte brushes with a range of different grafting densities is reported. Polymer brushes of poly(2-(diethylamino)ethyl methacrylate) were synthesised via atom transfer radical polymerisation on silicon wafers using a 'grafted from' approach. The [11-(2-bromo-2-methyl) propionyloxy]undecyl trichlorosilane initiator was covalently attached to the silicon via silylation, from which the brushes were grown using a catalytic system of copper(I) chloride and pentamethyldiethylenetriamine in tetrahydrofuran at 80°C. X-ray reflectivity was used to assess the initiator surfaces and an upper limit on the grafting density of the polymer was determined. The quality of the brushes produced was analysed using ellipsometry and atomic force microscopy, which is also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, we demonstrated the possibility to extend the range of capillary electrophoresis (CE) applications to the separation of non-water-soluble synthetic polymers. This work focuses on the control of the electro-osmotic flow (EOF) and on the limitation of the solute adsorption in nonaqueous electrolytes. For these purposes, different strategies were investigated. For the initial, a viscous additive (ethylene glycol or glycerol) was used in the electrolyte in order to decrease the EOF magnitude and, possibly, to compete with solute adsorption. A second strategy was to modify, before separation, the fused-silica capillary wall by the adsorption of poly(ethylene oxide) (PEO) via hydrogen bonding. The influence of the molecular mass of the adsorbed PEO on the EOF magnitude and direction was studied in electrolytes based on methanol/acetonitrile mixtures containing ammonium ions. For PEO molecular masses above 1000 g/mol, reversed (anodic) EOF were reported in accordance with previous results obtained with PEO covalently bonded capillaries. The influence of the nature and the concentration of the background electrolyte cation on the EOF magnitude and direction were also investigated. A third strategy consisted in modifying the capillary wall by the adsorption of a cationic polyelectrolyte layer. Advantageously, this polyelectrolyte layer suppressed the adsorption of the polymer solutes onto the capillary wall. The results obtained in this work confirm the high potential and the versatility of CE for the characterization of ionizable organic polymers in nonaqueous media.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Progress in the development of generic molecular devices based on responsive polymers is discussed. Characterisation of specially synthesised polyelectrolyte gels, "grafted from" brushes and triblock copolymers is reported. A Landolt pH-oscillator, based on bromate/ sulfite/ferrocyanide, with a room temperature period of 20 min and a range of 3.1 polyelectrolyte brushes, grown by surface initiated ATRP, have been characterised by scanning force microscopy, neutron reflectometry and single molecule force measurements. Triblock copolymers, based on hydrophobic end-blocks and either polyacid or polybase mid-block, have been used to produce polymer gels where the deformation of the molecules can be followed directly by SAXS and a correlation between molecular shape change and macroscopic deformation has been established. The three systems studied allow both the macroscopic and a molecular response to be investigated independently for the crosslinked gels and the brushes. The triblock copolymers demonstrate that the individual response of the polyelectrolyte molecules scale-up to give the macroscopic response of the system in an oscillating chemical reaction.