14 resultados para POLYCRYSTALLINE TIO2
em Aston University Research Archive
Resumo:
A family of titania derived nanocomposites synthesized via sol-gel and hydrothermal routes exhibit excellent performance for the photocatalytic degradation of two important exemplar water pollutants, oxytetracycline and Congo Red. Low loadings of Co3O4 nanoparticles dispersed over the surfaces of anatase TiO2 confer visible light photoactivity for the aqueous phase decomposition of organics through the resulting heterojunction and reduced band gap. Subsequent modification of these Co3O4/TiO2 composites by trace amounts of graphene oxide nanosheets in the presence of a diamine linker further promotes both oxytetracycline and Congo Red photodegradation under simulated solar and visible irradiation, through a combination of enhanced photoresponse and consequent radical generation. Radical quenching and fluorescence experiments implicate holes and hydroxyl radicals as the respective primary and secondary active species responsible for oxidative photodegradation of pollutants.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Nanocystalline TiO2 particles were successfully synthesized on porous hosts (SBA-15 and ZSM-15) via a sol-gel impregnation method. Resulting nanocomposites were characterized by XRD, TEM, BET surface analysis, Raman and UV-vis diffuse reflectance spectroscopy, and their photocatalytic activity for H2 production evaluated. XRD evidences the formation of anatase nanoparticles over both ZSM-5 and SBA-15 porous supports, with TEM highlighting a strong particle size dependence on titania precursor concentration. Photocatalytic activities of TiO2/ZSM-5 and TiO2/SBA-15 composites were significantly enhanced compared to pure TiO2, owing to the smaller TiO2 particle size and higher surface area of the former. TiO2 loadings over the porous supports and concomitant photocatalytic hydrogen production were optimized with respect to light absorption, available surface reaction sites and particle size. 10%TiO2/ZSM-5 and 20%TiO2/SBA-15 proved the most active photocatalysts, exhibiting extraordinary hydrogen evolution rates of 10,000 and 8800μmolgTiO2 -1 h-1 under full arc, associated with high external quantum efficiencies of 12.6% and 5.4% respectively under 365nm irradiation.
Resumo:
The long crack threshold behaviour of polycrystalline Udimet 720 has been investigated. Faceted crack growth is seen near threshold when the monotonic crack tip plastic zone is contained within the coarsest grain size. At very high load ratios R (=P min/P max) it is possiblefor the monotonic crack tip plastic zone to exceed the coarsest grain size throughout the entire crack growth regime and non1aceted structure insensitive crack growth is then seen down to threshold. Intrinsic threshold values were obtained for non1aceted and faceted crack growth using a constant K max, increasing K min, computer controlled load shedding technique (K is stress intensity factor). Very high R values are obtained at threshold using this technique (0.75-0.95), eliminating closure effects, so the intrinsic resistance of the material to crack propagation is reflected in these values. The intrinsic non1aceted threshold value ΔK th is lower (2.3 MN m -3/2) than the intrinsicfaceted ΔK th value (4.8 MN m -3/2). This is thought to reflect not only the effect of crack branching and deflection (in the faceted case) on the crack driving force, but also the inherent difference in resistance of the material to the two different crack propagation micromechanisms. © 1993 The Institute of Materials.
Resumo:
Fifty seven short fatigue cracks in the Ni-base superalloy AP1 have been examined, to ascertain how the paths taken by growing fatigue cracks are determined. The observations were made on the surface of a smooth specimen, and on the exposed fracture surfaces. Three dimensional reconstructions of the vulnerable microstructures in the vicinity of the cracks were produced. Initiation occurred in mode II, with the lines of intersection of the initiation sites with the specimen top surface orientated at approximately 45° to the tensile axis. These initiation sites developed in slip bands which crossed a large grain and at least one other grain via a grain boundary with a low angle of misorientation. 'River markings' on one of the initiation facets, indicated that the crack first opened from the top centre of the initiation grain. Subsequent to initiation, the growth paths of these cracks are related to the misorientations of the grains and the progress of the crack front.
Resumo:
A study was made of notch effects on the cleavage fracture of polycrystalline zinc. It was seen that the nominal fracture stress of SENB specimens was independent of notch angle. The maximum tensile stress below the notch at fracture in SENB specimens was shown to be different from the tensile stress at fracture in tensile testpieces over a temperature range from −196 to −17°C. The notch root strain at fracture was found to be the same as the uniaxial tensile fracture strain over this temperature interval. These results were interpreted as showing the cleavage fracture of polycrystalline zinc to be shear-stress or initiation controlled, as predicted by Stroh's dislocation model of cleavage.
Resumo:
Quaternary phosphate-based glasses in the P2O5–CaO–Na2O–TiO2 system with a fixed P2O5 and CaO content of 40 and 25 mol% respectively have been successfully synthesised via sol–gel method and bulk, transparent samples were obtained. The structure, elemental proportion, and thermal properties of stabilised sol–gel glasses have been characterised using X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), 31P nuclear magnetic resonance (31P NMR), titanium K-edge X-ray absorption near-edge structure (XANES), fourier transform infrared (FTIR) spectroscopy, and differential thermal analysis (DTA). The XRD results confirmed the amorphous nature for all stabilized sol–gel derived glasses. The EDX result shows the relatively low loss of phosphorus during the sol–gel process and Ti K-edge XANES confirmed titanium in the glass structure is in mainly six-fold coordination environment. The 31P NMR and FTIR results revealed that the glass structure consist of mainly Q1 and Q2 phosphate units and the Ti4+ cation was acting as a cross-linking between phosphate units. In addition DTA results confirmed a decrease in the glass transition and crystallisation temperature with increasing Na2O content. Ion release studies also demonstrated a decrease in degradation rates with increasing TiO2 content therefore supporting the use of these glasses for biomedical applications that require a degree of control over glass degradation. These sol–gel glasses also offer the potential to incorporate proactive molecules for drug delivery application due to the low synthesis temperature employed.
Resumo:
In order to inhibit the photocatalytic degradation of organic material supports induced by small titania (TiO2) nanoparticles, highly photocatalytically active, commercially available P25-TiO2 nanoparticles were first modified with a thin layer of (3-aminopropyl) triethoxysilane (APTES), which were then deposited and fixed onto the surface of paper samples via a simple, dip-coating process in water at room temperature. The resultant APTES-modified P25 TiO2 nanoparticle-coated paper samples exhibit much greater stability to UV-illumination than uncoated blank reference paper. Very little, or no, photo-degradation in terms of brightness and whiteness, respectively, of the P25-TiO2-nanoparticle-treated paper is observed. There are many other potential applications for this Green Chemistry approach to protect cellulosic fibres from UV-bleaching in sunlight and to protect their whiteness and maintain their brightness. © 2014 Elsevier Ltd.
Resumo:
Three-dimensional TiO2 with tunable morphology and crystalline phase was successfully prepared by the electrospinning technique and subsequent annealing. Porous-shaped anatase TiO2, cluster-shaped anatase TiO2, hierarchical-shaped rutile (minor) TiO2 and nano-necklace rutile (major) TiO2 were achieved at 500, 600, 700 and 800°C, respectively. The mechanism of the formation of these tailored morphologies and crystallinity was investigated. Lithium insertion properties were evaluated by galvanostatic and potentiostatic modes in half-cell configurations. By combining the large surface area, open mesoporosity and stable crystalline phase, the porous-shaped anatase TiO2 exhibited the highest capacity, best rate and cycling performance among the four samples. The present results demonstrated the usefulness of three-dimensional TiO 2 as an anode for lithium storage with improved electrode performance. © 2013 The Royal Society of Chemistry.
Resumo:
We investigate the impact of methane concentration in hydrogen plasma on the growth of large-grained polycrystalline diamond (PCD) films and its hydrogen impurity incorporation. The diamond samples were produced using high CH4 concentration in H2 plasma and high power up to 4350 W and high pressure (either 105 or 110 Torr) in a microwave plasma chemical vapor deposition (MPCVD) system. The thickness of the free-standing diamond films varies from 165 µm to 430 µm. Scanning electron microscopy (SEM), micro-Raman spectroscopy and Fourier-transform infrared (FTIR) spectroscopy were used to characterize the morphology, crystalline and optical quality of the diamond samples, and bonded hydrogen impurity in the diamond films, respectively. Under the conditions employed here, when methane concentration in the gas phase increases from 3.75% to 7.5%, the growth rate of the PCD films rises from around 3.0 µm/h up to 8.5 µm/h, and the optical active bonded hydrogen impurity content also increases more than one times, especially the two CVD diamond specific H related infrared absorption peaks at 2818 and 2828 cm−1 rise strongly; while the crystalline and optical quality of the MCD films decreases significantly, namely structural defects and non-diamond carbon phase content also increases a lot with increasing of methane concentration. Based on the results, the relationship between methane concentration and diamond growth rate and hydrogen impurity incorporation including the form of bonded infrared active hydrogen impurity in CVD diamonds was analyzed and discussed. The effect of substrate temperature on diamond growth was also briefly discussed. The experimental findings indicate that bonded hydrogen impurity in CVD diamond films mainly comes from methane rather than hydrogen in the gas source, and thus can provide experimental evidence for the theoretical study of the standard methyl species dominated growth mechanism of CVD diamonds grown with methane/hydrogen mixtures.
Resumo:
A family of Cu/TiO2 catalysts was prepared using a refined sol–gel method, and tested in the photocatalytic reduction of CO2 by H2O to CH4 using a stirred batch, annular reactor. The resulting photoactivity was benchmarked against pure TiO2 nanoparticles (synthesised by an identical sol–gel route). CO2 photoreduction exhibited a strong volcano dependence on Cu loading, reflecting the transition from 2-dimensional CuOx nanostructures to 3-dimensional crystallites, with optimum CH4 production observed for 0.03 wt.% Cu/TiO2.