4 resultados para POLY(N-ISOPROPYLACRYLAMIDE)

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of sodium cholate (NaC; concentration 1-16 mM), a biological surfactant, on the aggregation behavior of 1% (w/v, 2.2 × 10(-3) M) poly(N-isopropylacrylamide) (PNIPAM) aqueous solutions was studied as a function of temperature. From turbidity, dynamic light scattering, viscosity, and fluorescence measurements, it was observed that (i) there is NaC-induced nanoscale aggregation of PNIPAM in its sol state and (ii) the lower critical solution temperature corresponding to sol-gel transition shifts to a lower temperature by about 2 °C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new family of multifunctional scaffolds, incorporating selected biopolymer coatings on basic Bioglass® derived foams has been developed. The polymer coatings were investigated as carrier of vancomycin which is a suitable drug to impart antibiotic function to the scaffolds. It has been proved that coating with PLGA (poly(lactic-co-glycolic acid)) with dispersed vancomycin-loaded microgels provides a rapid delivery of drug to give antibacterial effects at the wound site and a further sustained release to aid mid to long-term healing. Furthermore, the microgels also improved the bioactivity of the scaffolds by acting as nucleation sites for the formation of HA crystals in simulated body fluid. © 2013 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biomimetic hydroxyapatite was synthesized by the controlled release of calcium and phosphate ions from poly(N-isopropylacrylamide-co-acrylic acid) (poly(NIPAAm-co-AA)) nanogels. Mixing nanogels containing calcium chloride (CaCl2 ·2H2O) and nanogels containing sodium hydrogen phosphate (Na2HPO4·2H2O) in simulated body fluid (SBF) at physiological conditions of 37 °C and pH 7.4, biomimetic hydroxyapatite was obtained. By studying separately the loading and controlled release of the salts from the nanogels, adequate conditions were chosen to synthesize the hydroxyapatite: Calcium loaded (Ca-loaded) nanogels (1000 mg/ml; 400:3) and inorganic phosphate loaded (Pi-loaded) nanogels (90 mg/ml; 12:1) in a ratio of 2:1 were placed in SBF solution. The obtained powders characterization showed that a low crystalline and substituted hydroxyapatite similar to bone apatite was formed. Such a strategy could be used in medical and dental procedures to induce rapid inorganic mineral formation from a nanogel-containing biomaterial. © 2012 American Scientific Publishers. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stimuli-sensitive microgels of poly(N-isopropylacrylamide-co-acrylic acid) (designated as P(NIPAAm-co-AA)) were prepared through precipitation polymerization. Their capacity to load and release different drugs under different conditions, including physiological, in a controlled manner was analyzed. Two drugs were assayed and compared: dexamethasone and vancomycin. The prepared microgel particles show good thermosensitivity. In addition, the amount of cross-linker used in the preparation of the microgels does not greatly influence the drug-release capability of P(NIPAAm-co-AA)), but the amount of drug used to load the microgels did result in bigger amounts of drug released afterwards. These results imply potential application of prepared stimuli-sensitive microgel dispersions as drug-delivery systems and tissue engineering materials.