16 resultados para POLY(DIMETHYLSILOXANE) MICROFLUIDIC DEVICES
em Aston University Research Archive
Resumo:
We present a single stage direct fs ablation results which show that it is possible to make high quality and high aspect ratio devices in a single stage process using a CAD optimised approach.
Resumo:
We present a single stage direct fs ablation results which show that it is possible to make high quality and high aspect ratio devices in a single stage process using a CAD optimised approach.
Resumo:
We present a single stage direct fs ablation results which show that it is possible to make high quality and high aspect ratio devices in a single stage process using a CAD optimised approach. © 2008 Optical Society of America.
Resumo:
This thesis has focused on three key areas of interest for femtosecond micromachining and inscription. The first area is micromachining where the work has focused on the ability to process highly repeatable, high precision machining with often extremely complex geometrical structures with little or no damage. High aspect ratio features have been demonstrated in transparent materials, metals and ceramics. Etch depth control was demonstrated especially in the work on phase mask fabrication. Practical chemical sensing and microfluidic devices were also fabricated to demonstrate the capability of the techniques developed during this work. The second area is femtosecond inscription. Here, the work has utilised the non-linear absorption mechanisms associated with femtosecond pulse-material interactions to create highly localised refractive index changes in transparent materials to create complex 3D structures. The techniques employed were then utilised in the fabrication of Phase masks and Optical Coherence Tomography (OCT) phantom calibration artefacts both of which show the potential to fill voids in the development of the fields. This especially the case for the OCT phantoms where there exists no previous artefacts of known shape, allowing for the initial specification of parameters associated with the quality of OCT machines that are being taken up across the world in industry and research. Finally the third area of focus was the combination of all of the techniques developed through work in planar samples to create a range of artefacts in optical fibres. The development of techniques and methods for compensating for the geometrical complexities associated with working with the cylindrical samples with varying refractive indices allowed for fundamental inscription parameters to be examined, structures for use as power monitors and polarisers with the optical fibres and finally the combination of femtosecond inscription and ablation techniques to create a magnetic field sensor with an optical fibre coated in Terfenol-D with directional capability. Through the development of understanding, practical techniques and equipment the work presented here demonstrates several novel pieces of research in the field of femtosecond micromachining and inscription that has provided a broad range of related fields with practical devices that were previously unavailable or that would take great cost and time to facilitate.
Resumo:
A novel laser electrodispersion (LE) technique was employed to deposit gold nanoparticles onto Si and SiOx surfaces. The LE technique combines laser ablation with cascade fission of liquid metal micro-drops, which results in the formation of nanoparticles upon rapid cooling. The shape and the size distribution of the Au nanoparticles prepared by LE depend on the nature of the support. Gold nanoparticles were also deposited in the channels of microreactors fabricated by wet etching of Si and used as SE(R)RS sensors. The influence of the nanoparticle surface density as well as of the nature of the substrate on the Raman response was studied. At an appropriate surface density of the deposited nanoparticles a significant enhancement of Raman signal was observed showing the possibility to create efficient SERS substrates. Application of microfluidic devices in surface enhanced Raman spectroscopy (SERS) in continuous-flow mode with sensor regeneration is described. © 2011 The Royal Society of Chemistry.
Resumo:
This paper reported a three-dimensional microfluidic channel structure, which was fabricated by Yb:YAG 1026?nm femtosecond laser irradiation on a single-crystalline diamond substrate. The femtosecond laser irradiation energy level was optimized at 100?kHz repetition rate with a sub-500 femtosecond pulse duration. The morphology and topography of the microfluidic channel were characterized by a scanning electron microscope and an atomic force microscope. Raman spectroscopy indicated that the irradiated area was covered by graphitic materials. By comparing the cross-sectional profiles before/after removing the graphitic materials, it could be deduced that the microfluidic channel has an average depth of ~410?nm with periodical ripples perpendicular to the irradiation direction. This work proves the feasibility of using ultra-fast laser inscription technology to fabricate microfluidic channels on biocompatible diamond substrates, which offers a great potential for biomedical sensing applications.
Resumo:
This paper reported a three-dimensional microfluidic channel structure, which was fabricated by Yb:YAG 1026?nm femtosecond laser irradiation on a single-crystalline diamond substrate. The femtosecond laser irradiation energy level was optimized at 100?kHz repetition rate with a sub-500 femtosecond pulse duration. The morphology and topography of the microfluidic channel were characterized by a scanning electron microscope and an atomic force microscope. Raman spectroscopy indicated that the irradiated area was covered by graphitic materials. By comparing the cross-sectional profiles before/after removing the graphitic materials, it could be deduced that the microfluidic channel has an average depth of ~410?nm with periodical ripples perpendicular to the irradiation direction. This work proves the feasibility of using ultra-fast laser inscription technology to fabricate microfluidic channels on biocompatible diamond substrates, which offers a great potential for biomedical sensing applications.
Resumo:
Over the last twenty years, we have been continuously seeing R&D efforts and activities in developing optical fibre grating devices and technologies and exploring their applications for telecommunications, optical signal processing and smart sensing, and recently for medical care and biophotonics. In addition, we have also witnessed successful commercialisation of these R&Ds, especially in the area of fibre Bragg grating (FBG) based distributed sensor network systems and technologies for engineering structure monitoring in industrial sectors such as oil, energy and civil engineering. Despite countless published reports and papers and commercial realisation, we are still seeing significant and novel research activities in this area. This invited paper will give an overview on recent advances in fibre grating devices and their sensing applications with a focus on novel fibre gratings and their functions and grating structures in speciality fibres. The most recent developments in (i) femtosecond inscription for microfluidic/grating devices, (2) tilted grating based novel polarisation devices and (3) dual-peak long-period grating based DNA hybridisation sensors will be discussed.
Resumo:
Poly(β-hydroxybutyrate), (PHB), is a biologically produced, biodegradable thennoplastic with commercial potential. In this work the qualitative and quantitative investigations of the structure and degradation of a previously unstudied, novel, fibrous form of PHB, were completed. This gel-spun PHB fibrous matrix, PHB(FM), which has a similar appearance to cotton wool, possesses a relatively complex structure which combines a large volume with a low mass and has potential for use as a wound scaffolding device. As a result of the intrinsic problems presented by this novel structure, a new experimental procedure was developed to analyze the degradation of the PHB to its monomer hydroxybutyric acid, (HBA). This procedure was used in an accelerated degradation model which accurately monitored the degradation of the undegraded and degraded fractions of a fibrous matrix and the degradation of its PHB component. The in vitro degradation mechanism was also monitored using phase contrast and scanning electron microscopy, differential scanning calorimetry, fibre diameter distributions and Fourier infra-red photoacoustic spectroscopy. The accelerated degradation model was used to predict the degradation of the samples in the physiological model and this provided a clearer picture as to the samples potential biodegradation as medical implantation devices. The degradation of the matrices was characterized by an initial penetration of the degradative medium and weakening of the fibre integrity due to cleavage of the ester linkages, this then led to the physical collapse of the fibres which increased the surface area to volume ratio of the sample and facilitated its degradation. Degradation in the later stages was reduced due to the experimental kinetics, compaction and degradation resistant material, most probably the highly crystalline regions of the PHB. The in vitro degradation of the PHB(FM) was influenced by blending with various polysaccharides, copolymerizing with poly(~-hydroxyvalerate), (PHV), and changes to the manufacturing process. The degradation was also detennined to be faster than that of conventional melt processed PHB based samples. It was concluded that the material factors such as processing, sample size and shape affected the degradation of PHB based samples with the major factor of sample surface area to volume ratio being of paramount importance in determining the degradation of a sample.
Resumo:
Ultrasonics offers the possibility of developing sophisticated fluid manipulation tools in lab-on-a-chip technologies. Here we demonstrate the ability to shape ultrasonic fields by using phononic lattices, patterned on a disposable chip, to carry out the complex sequence of fluidic manipulations required to detect the rodent malaria parasite Plasmodium berghei in blood. To illustrate the different tools that are available to us, we used acoustic fields to produce the required rotational vortices that mechanically lyse both the red blood cells and the parasitic cells present in a drop of blood. This procedure was followed by the amplification of parasitic genomic sequences using different acoustic fields and frequencies to heat the sample and perform a real-time PCR amplification. The system does not require the use of lytic reagents nor enrichment steps, making it suitable for further integration into lab-on-a-chip point-of-care devices. This acoustic sample preparation and PCR enables us to detect ca. 30 parasites in a microliter-sized blood sample, which is the same order of magnitude in sensitivity as lab-based PCR tests. Unlike other lab-on-a-chip methods, where the sample moves through channels, here we use our ability to shape the acoustic fields in a frequency-dependent manner to provide different analytical functions. The methods also provide a clear route toward the integration of PCR to detect pathogens in a single handheld system.
Resumo:
Big advances are being achieved in the design of new implantable devices with enhanced properties. For example, synthetic porous three-dimensional structures can mimic the architecture of the tissues, and serve as templates for cell seeding. In addition, polymeric nanoparticles are able to provide a programmable and sustained local delivery of different types of biomolecules. In this study novel alternative scaffolds with controlled bioactive properties and architectures are presented. Two complementary approaches are described. Firstly, scaffolds with nanogels as active controlled release devices incorporated inside the three-dimensional structure are obtained using the thermally induced phase separation (TIPS) method. Secondly, a novel coating method using the spraying technique to load these nanometric crosslinked hydrogels on the surface of two-dimensional (2D) and three-dimensional (3D) biodegradable scaffolds is described. The scanning electron microscopy (SEM) images show the distribution of the nanogels on the surface of different substrates and also inside the porous structure of poly-a-hydroxy ester derivative foams. Both of them are compared in terms of manufacturability, dispersion and other processing variables.
Resumo:
Poly(ethylene oxide) has been coupled to poly(3-hexylthiophene) using esterification to produce pure diblock copolymers, highly relevant for use in organic electronic devices. The new synthetic route described herein uses a metal-free coupling step, for the first time, to afford well-defined polymers in high yields following facile purification.
Resumo:
Over the last twenty years, we have been continuously seeing R&D efforts and activities in developing optical fibre grating devices and technologies and exploring their applications for telecommunications, optical signal processing and smart sensing, and recently for medical care and biophotonics. In addition, we have also witnessed successful commercialisation of these R&Ds, especially in the area of fibre Bragg grating (FBG) based distributed sensor network systems and technologies for engineering structure monitoring in industrial sectors such as oil, energy and civil engineering. Despite countless published reports and papers and commercial realisation, we are still seeing significant and novel research activities in this area. This invited paper will give an overview on recent advances in fibre grating devices and their sensing applications with a focus on novel fibre gratings and their functions and grating structures in speciality fibres. The most recent developments in (i) femtosecond inscription for microfluidic/grating devices, (2) tilted grating based novel polarisation devices and (3) dual-peak long-period grating based DNA hybridisation sensors will be discussed.
Resumo:
Tissue transglutaminase (tTG) has recently been established as a novel cell surface adhesion protein that binds with high affinity to fibronectin in the pericellular matrix. In this study, we have made use of this property to enhance the biocompatibility of poly(epsilon-caprolactone) (PCL), a biomaterial currently used in bone repair. Poly(epsilon-caprolactone) discs were first coated with fibronectin and then tTG. The surface localisation of the two proteins was confirmed using ELISA and the tTG shown to be active on the surface by incorporation of biotin cadaverine into the fibronectin coating. When human osteoblasts (HOBs) were seeded onto the coated polymer surfaces in serum free medium, the surface coated with fibronectin and then tTG showed an increase in the spreading of the cells as compared to the surface coated with fibronectin alone, when analysed using environmental scanning electron microscopy. The presence of tTG had no effect on HOB cell differentiation when analysed by determining alkaline phosphatase activity. The use of tTG as a novel adhesion protein in this way may therefore have considerable potential in forming a stable tissue/biomaterial interface for application in medical devices.
Resumo:
Controlling polymer thin-film morphology and crystallinity is crucial for a wide range of applications, particularly in thin-film organic electronic devices. In this work, the crystallization behavior of a model polymer, poly(ethylene oxide) (PEO), during spin-coating is studied. PEO films were spun-cast from solvents possessing different polarities (chloroform, THF, and methanol) and probed via in situ grazing incidence wide-angle X-ray scattering. The crystallization behavior was found to follow the solvent polarity order (where chloroform < THF < methanol) rather than the solubility order (where THF > chloroform > methanol). When spun-cast from nonpolar chloroform, crystallization largely followed Avrami kinetics, resulting in the formation of morphologies comprising large spherulites. PEO solutions cast from more polar solvents (THF and methanol) do not form well-defined highly crystalline morphologies and are largely amorphous with the presence of small crystalline regions. The difference in morphological development of PEO spun-cast from polar solvents is attributed to clustering phenomena that inhibit polymer crystallization. This work highlights the importance of considering individual components of polymer solubility, rather than simple total solubility, when designing processing routes for the generation of morphologies with optimum crystallinities or morphologies.