2 resultados para POLY(DI-NORMAL-ALKYLSILANES)
em Aston University Research Archive
Resumo:
We report the performance of a group of adult dyslexics and matched controls in an array-matching task where two strings of either consonants or symbols are presented side by side and have to be judged to be the same or different. The arrays may differ either in the order or identity of two adjacent characters. This task does not require naming – which has been argued to be the cause of dyslexics’ difficulty in processing visual arrays – but, instead, has a strong serial component as demonstrated by the fact that, in both groups, Reaction times (RTs) increase monotonically with position of a mismatch. The dyslexics are clearly impaired in all conditions and performance in the identity conditions predicts performance across orthographic tasks even after age, performance IQ and phonology are partialled out. Moreover, the shapes of serial position curves are revealing of the underlying impairment. In the dyslexics, RTs increase with position at the same rate as in the controls (lines are parallel) ruling out reduced processing speed or difficulties in shifting attention. Instead, error rates show a catastrophic increase for positions which are either searched later or more subject to interference. These results are consistent with a reduction in the attentional capacity needed in a serial task to bind together identity and positional information. This capacity is best seen as a reduction in the number of spotlights into which attention can be split to process information at different locations rather than as a more generic reduction of resources which would also affect processing the details of single objects.
Resumo:
Two antioxidant modified layered double hydroxides (AO-LDHs) were successfully prepared by theintercalation of 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid (IrganoxCOOH) and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) in the layered structure of LDH. It was foundthat by anchoring the phenolic moieties to the LDH layers the antioxidant power is retained in the caseof Trolox, and even amplified in the case of IrganoxCOOH. A small amount of the two AO-LDHs wasincorporated into poly(lactic acid), PLA, by solution mixing and melt extrusion. The thermo-oxidativestability of the composites was compared with that of the neat PLA and PLA containing free AOs. SECanalysis indicates that, after a controlled period of ageing, both the AO-LDHs protect the PLA fromchain scission. The oxidation induction time (OIT, DSC) at 230 °C shows also the beneficial effects ofthe presence of the functional filler in the polymer matrix. Further, results from a preliminary migrationtest suggest that the AO species have a low tendency to migrate away from the AO-LDHs embedded inthe polymer matrix thus keeping the AO protected inside the nanofiller layers thereby remaining activefor a longer time.